EDN: PGBKEJ

DOI: 10.56618/2071-2693_2025_17_2_56

УДК 615

ВЛИЯНИЕ ВЫСОКОТЕХНОЛОГИЧНОГО ПРЕПАРАТА АУТОЛОГИЧЕСКИХ ИММУНОЦИТОВ НА МИКРООКРУЖЕНИЕ ОПУХОЛЕВЫХ КЛЕТОК И ВЫЖИВАЕМОСТЬ КРЫС С ГЛИОМОЙ С6 (ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ IN VIVO)

Олег Игоревич Па κ^1

pak.oi@dvfu.ru, orcid.org/0000-0002-1312-8308

Александра Асадовна Косьянова¹

kosianova.a@dvfu.ru, orcid.org/0000-0001-5655-5855

Сергей Викторович Зайцев¹

Zaitcev.svi@dvfu.ru, orcid.org/0000-0002-0690-7389

Ева Сергеевна Пугачева¹

pugacheva.es@dvfu.ru, orcid.org/0009-0006-8586-6437

Игорь Степанович Брюховецкий¹

bruhovetsky@mail.ru, orcid.org/0000-0003-3654-3069

- 1 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» Министерства науки и высшего образования Российской Федерации, Школа медицины и наук о жизни
- (о. Русский, п. Аякс, д. 10, г. Владивосток, Российская Федерация, 690922)

Резюме

ВВЕДЕНИЕ. Глиобластома (ГБ) – одна из самых смертоносных опухолей мозга человека.

ЦЕЛЬ. Изучить влияние препарата аутологических иммуноцитов с активированным TLR/NF-kβ сигналингом на микроокружение опухолевых клеток (OK) и выживаемость крыс с глиомой C6.

МАТЕРИАЛЫ И МЕТОДЫ. Использованы клетки глиомы С6, мононуклеарные клетки костного мозга (ККМ), аутбредные крысы породы Wistar. Применяли методы экспериментального моделирования *in vivo* и *in vivo*, морфологического, иммуногистохимического и иммуноферментного анализа. Оценка выживаемости проведена по Каплану – Майену.

РЕЗУЛЬТАТЫ. Обработка мононуклеарных клеток LPS+дсPHK $ex\ vivo$ позволяет получить высокотехнологичный лекарственный препарат (ВЛП), характеризующийся экспрессией антигенов CD3+ ранней активации В-лимфоцитов ((97,9±7,1) против (80,1±6,1) %, P<0,05) и NK-клеток ((91,8±11,1) против (72,2±7,7) %, P<0,05), увеличением числа Т-киллеров по отношению к Т-супрессорным клеткам ((42,8±4,4) против (30,5±3,1) %, P<0,05), экспрессией антигена ранней активации лимфоцитов CD69 ((82,2±18,8) против (11,2±2,2), P<0,05), увеличением содержания CD45+-клеток (66,3 против 42,1 %) и снижением содержания стволовых CD90+-клеток (3,3 против 21,5 %). Трансплантациях ВЛП в организм крыс с глиомой C6 обогащает опухоль маркерами CD86+-клеток, что сопровождается увеличением содержания провоспалительных цитокинов ИЛ- β 1, Б-ИЛ 6, В-ИЛ18, Г-ФНО1 α 1. Комбинация ВЛП и Плериксафора увеличивает выживаемость экспериментальных животных (74,5 против 60 дней, Р<0,0001).

ЗАКЛЮЧЕНИЕ. Комплексное применение ВЛП и Плериксафора модифицирует микроокружение ОК и увеличивает выживаемость экспериментальных животных с глиомой С6.

Ключевые слова: глиобластома, опухолевые клетки, микроокружение рецептор СХСR4, Плериксафор, высокотехнологичный лекарственный препарат

Для цитирования: Пак О. И., Косьянова А. А., Зайцев С. В., Пугачева Е. С., Брюховецкий И. С. Влияние высокотехнологичного препарата аутологических иммуноцитов на микроокружение опухолевых клеток и выживаемость крыс с глиомой С6 (экспериментальное исследование in vivo) // Российский нейрохирургический журнал им. проф. А. Л. Поленова. 2025. Т. XVII, № 2. С. 56–64. DOI: 10.56618/2071-2693 2025 17 2 56.

EFFECT OF A HIGH-TECH AUTOLOGOUS IMMUNOCYTE PREPARATION ON THE TUMOR CELL MICROENVIRONMENT AND SURVIVAL OF RATS WITH C6 GLIOMA (IN VIVO EXPERIMENTAL STUDY)

Oleg I. Pak¹

pak.oi@dvfu.ru, orcid.org/ 0000-0002-1312-8308

Aleksandra A. Kosianova¹

kosianova.a@dvfu.ru, orcid.org/0000-0001-5655-5855

Sergei V. Zaitsev¹

Zaitcev.svi@dvfu.ru, orcid.org/0000-0002-0690-7389

Eva S. Pugacheva¹

pugacheva.es@dvfu.ru, orcid.org/0009-0006-8586-6437

Igor S. Bryukhovetskiy¹

bruhovetsky@mail.ru, orcid.org/0000-0003-3654-3069

¹ Far Eastern Federal University, School of Medicine & Life Science (10 Russky Island, Ajax, Vladivostok, Russian Federation, 690922)

Abstract

INTRODUCTION. Glioblastoma (GB) is one of the most lethal human brain tumors.

AIM. To study the effect of a preparation of autologous immunocytes with activated TLR/NF- $k\beta$ signaling on the microenvironment of tumor cells (TC) and the survival of rats with C6 glioma.

MATERIALS AND METHODS. C6 glioma cells, bone marrow mononuclear cells (BMMC), and outbred Wistar rats were used. Methods: experimental modeling *in vivo* and *in vivo*, morphological, immunohistochemical, and enzyme immunoassay. Survival was assessed according to Kaplan – Meier.

RESULTS. Ex vivo treatment of mononuclear cells with LPS + dsRNA allows obtaining a high-tech medicinal product (HTMP) characterized by the expression of CD3+ antigens of early activation of B lymphocytes (97.9±7.1 vs. 80.1±6.1 %, P<0.05) and NK cells (91.8±11.1 vs. 72.2±7.7 %, P<0.05), an increase in the number of T-killers in relation to T-suppressor cells (42.8±4.4 vs. 30.5 ± 3.1 %, P<0.05), expression of the early lymphocyte activation antigen CD69 (82.2±18.8 vs. 11.2 ± 2.2 , P<0.05), an increase in the content of CD45+ cells (66.3 vs. 42.1%,) and a decrease in the content of stem cells CD90+ cells (3.3 versus 21.5 %). Transplantation of HTMP into the body of rats with C6 glioma enriches the tumor with markers of CD86+ cells, which is accompanied by an increase in the content of proinflammatory cytokines IL-β1, B – IL 6, B – IL18, TNF1α. The combination of HTMP and plerixafor increases the survival of experimental animals (74,5 versus 60 days, P<0,0001).

CONCLUSION. The complex use of HTMP and plerixafor modifies the OC microenvironment and increases the survival of experimental animals with C6 glioma

Keywords: glioblastoma, tumor cells, microenvironment receptor CXCR4, plerixafor, high-tech drug

For citation: Pak O. I., Kosianova A. A., Zaitsev S. V., Pugacheva E. S., Bryukhovetskiy I. S. Effect of a high-tech autologous immunocyte preparation on the tumor cell microenvironment and survival of rats with C6 glioma (in vivo experimental study). Russian neurosurgical journal named after professor A. L. Polenov. 2025;XVII(2):56–64. (In Russ.). DOI: 10.56618/2071-2693_2025_17_2_56.

Введение

Глиобластома (ГБ) – смертоносная первичная опухоль мозга человека. При выполнении стандартного протокола комплексного лечения [1] медиана выживаемости больных – 15 месяцев. Резистентность к лечению связана [2] со способностью опухолевых клеток (ОК) формировать паракринные связи с локальным иммуносупрессивным микроокружением [3], в котором особо важную роль играют клетки костного мозга (ККМ). Селективный антагонист рецептора СХСВ4 – Плериксафор (PLF) – снижает содержание анергических лимфоцитов и Т-регуляторных клеток [4] в микроокружении

опухолевых стволовых клеток (ОСК), однако возможности химиолучевой терапии (ХЛТ) могут быть усилены при воспалительной активации других иммуноцитов, рекрутируемых опухолью.

Мы предположили, активация *ex vivo* сигнального пути TLR/NF-kβ в аутологических мононуклеарных CD45+ККМ с последующим возвращением их в организм реципиента в виде высокотехнологичного лекарственного препарата (ВЛП) повысит эффективность применения PLF и может продлить жизнь больного.

Цель работы – изучить влияние препарата аутологических иммуноцитов с активиро-

ванным TLR/NF-kβ сигналингом на микроокружение ОСК и выживаемость крыс с глиомой C6.

Материалы и методы

Культуральная среда. Игла модифицированная Дульбекко (№ 21068028), FBS (№ 16000044), антибиотик-антимикотик 100Х (№ 15240096); Трипсин, модифицированный ЭДТА (0,25 % № 25200056), – производства компании *Gibco*; темозоломид (№ 85622-93-1), Плериксафор (ПЛФ, № 110078-46-1). Набор ProcartaPlex™ Rat Cytokine & Chemokine Panel 9, 22plex (EPX220-30122-901, Invitrogen[™]), антитела против CD86 (ab238468, Abcam). Антитела против CD45-APC/Cy7 (клон OX-1, № 202216, *Biolegend*), CD44 (ab316123), CD90 (ab225), CD45 (ab10558).

Культуры клеток: клетки глиомы линии C6 (CCL10), мононуклеарные клетки костного мозга человека (PCS-800-013) производства компании *ATCC* (США), характеристики культур подтверждены сертификатами соответствия ISO 9001, ISO 13485, ISO/IEC 17025 и ISO 17034.

Проточная цитометрия выполнена по стандартной методике на проточном цитометре CytoFlex (Beckman Coulter). Для выявления основных популяций клеток использовали антитела производства Beckman Coulter (США).

Экспериментальные животные. В работе использовано 148 аутбредных крыс породы Wistar, массой 150–200 г. Сформированы группы: I – интактный контроль, II – ХЛТ, III – ХЛТ+РLF, IV – ХЛТ+ВЛП, V – ХЛТ+РLF+ВЛП (N=24 в каждой). Эксперимент одобрен Этическим комитетом Школы медицины Дальневосточного федерального университета.

Крыс содержали в условиях, соответствующих требованиям законодательства Российской Федерации и международных регламентирующих документов.

Культивирование клеток глиомы C6. Клетки культивировали при стандартных условиях ($t=37~^{\circ}\text{C}$, $5~^{\circ}\text{CO}_2$) до достижения $80~^{\circ}$ конфлюэнтности монослоя, адгезировавшие клетки снимали с помощью ферментативной диссоциации ($0.05~^{\circ}$ trypsin-EDTA, $1:4~37~^{\circ}\text{C}$, $10~^{\circ}$ мин) и центрифугировали ($120~^{\circ}$ g, $4~^{\circ}$ мин), ресуспен-

дировали и после третьего пассажа использовали в эксперименте.

Моделирование глиобластомы. 10⁶ живых ОК имплантировали в мозг крысы с помощью стереотаксического аппарата (Narishige, Япония) по координатам: Ар-1; Л 3,0; V 4,5, ТБС – 2,4 мм. Опухоль подтверждали методом магнитно-резонансной томографии (МРТ) Bruker's PharmaScan® (США).

Создание высокотехнологичного лекарственного препарата. В соответствии с ранее разработанным методом [6], 10^6 ККМ инкубировали в среде DMEM с содержанием липополисахара Escherichia coli (No. 93572-42-0, Merk, США) и двуспиральной РНК-натриевой соли («Промомед рус», Россия) в концентрации 1 мкг/мл. Через 12 ч инкубации клетки отмывали средой и стерильным физраствором и вводили в организм крысы внутривенно в количестве 10^3 .

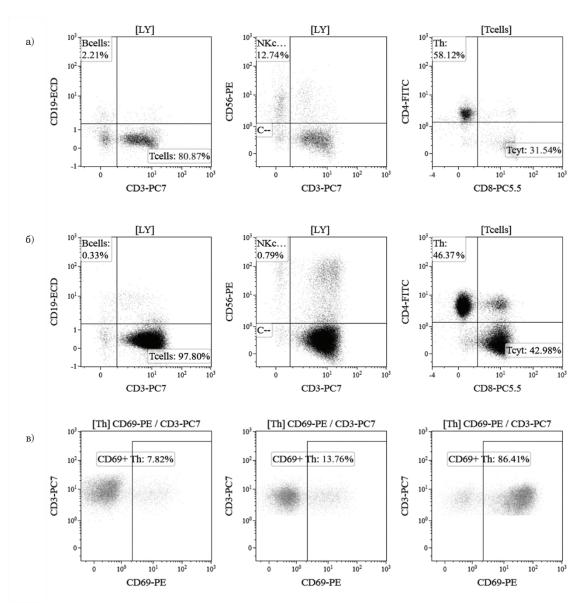
Экспериментальная терапия. Крыс с глиомой С6 облучали с помощью у-терапевтической установки TrueBeam (США) до суммарной дозы 30 Гр. Темозоломид (ТМЗ) давали per os 40 мг/кг массы тела, 7 дней. ПЛФ вводили подкожно в дозе 0,24 мг/кг/день 7 суток. ВЛП вводили внутривенно 10³ ККМ в 5 мл стерильного физраствора.

Морфологическое и иммуногистохимическое (ИГХ) исследования. Серийные срезы готовили на криостатном микротоме MicromHM 560 (Thermo, США), окрашивали по стандартной методике и изучали с помощью микроскопа AxioScope A1 (Carl Zeiss, Германия) с цифровой фотокамерой.

 $\it Иммуноферментный анализ прове-$ ден на спектрофотометре BioRad xMark при $\lambda = 450$ нм. Результат вычисляли по калибровочной кривой и выражали в нг/мл.

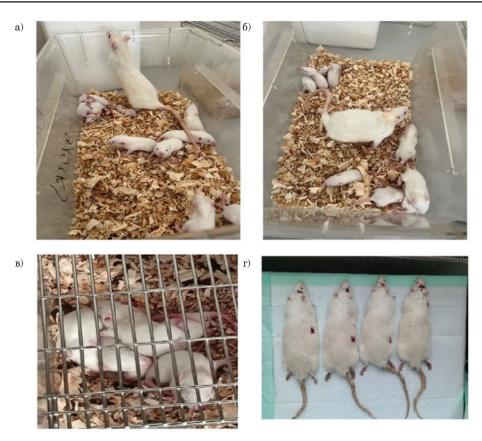
Для оценки выживаемости экспериментальных животных строили кривую Каплана — Майера.

Статистическую обработку результатов проводили с использованием пакета прикладных программ GraphPad Prism 4.0 (GraphPad Software Inc, США). В работе применяли U-тест Манна – Уитни для малых групп. Для проверки множественных сравнений применяли метод ANOVA. Результаты считались статистически значимыми при р<0,05.


О. И. Пак и др. Том XVII, № 2, 2025

Результаты исследования

Стимуляция LPS + ∂c PHK обогащала популяцию мононуклеарных ККМ антигенами CD3+ ранней активации В-лимфоцитов ((97,9±7,1) против (80,1± 6,1) % в контроле, P<0,05) и NK-клеток ((91,8±11,1) против (72,2±7,7) % контроле, P<0,05) (рис. 1), а также значимым увеличением числа CD8+ Т-киллеров по отношению к иммуносупрессорным Т-клеткам ((42,8±4,4) против (30,5±3,1) % в контроле). Через 12 ч экспозиции была отмечена экспрессия антигена ранней активации лимфоцитов CD69 ((11,2±2,2) в контроле до (82,2±18,8) при стимуляции) (рис. 1).


Для получения образцов костного мозга крыс одного помета новорожденных крысят с момента рождения разделяли на две равные группы: А – доноры, Б – реципиенты (рис. 2).

Животных-реципиентов содержали до 2 месяцев, перевивали глиому C6 (рис. 2) и использовали в эксперименте, а затем забирали образцы костного мозга (рис. 3), который впоследствии обрабатывали LPS + дсРНК в течение 12 ч. Адгезировавшие к поверхности культурального планшета ККМ окрашивали анти-

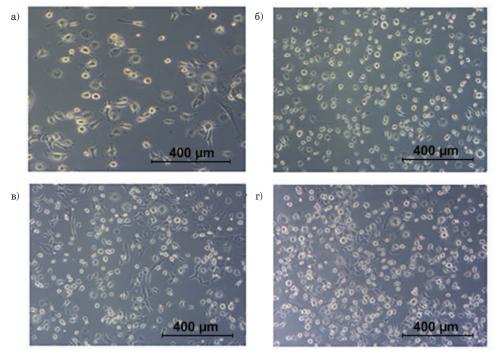

Рис. 1. Иммунофенотипирование мононуклеарных ККМ в отношении маркеров Т-лимфоцитов по результатам проточной цитометрии (донор 1 из 8): a – контроль; b, b – стимуляция

Fig. 1. Immunophenotyping of mononuclear cells of the BM for T-lymphocyte markers based on flow cytometry results (Donor 1 of 8): a – control; δ , a – stimulation

Рис. 2. Животные-сиблинги, используемые в эксперименте: a – доноры костного мозга; b – реципиенты; b – животные перед имплантацией клеток линии C6; c – прооперированные животные

Fig. 2. Sibling animals used in the experiment: a – bone marrow donors; δ – recipients; ϵ – animals before implantation of C6 cells; ϵ – animals after surgery

Рис. 3. Клетки костного мозга крысы линии Wistar: a – 1-е сутки; b – 7-е сутки; b , c – стимуляция клеток костного мозга LPS + дсРНК, b (a) и 12 (a) ч. Инвертированная микроскопия

Fig. 3. Bone marrow cells of Wistar rats: $a-1^{\rm st}$ day; $6-7^{\rm th}$ day; e, e – stimulation of bone marrow cells with LPS + dsRNA, 6 (e) and 12 (e) hours. Inverted microscopy

Иммуногистохимическая характеристика клеток костного мозга крыс, используемых в эксперименте Immunohistochemical characteristics of rat bone marrow cells used in the experiment

Маркер	Количество клеток (контроль)	ЛПС	дсРНК	ЛПС+ дсРНК
CD90 – антиген стволовых клеток костного мозга	$(21,5\pm3,2)$	$(17,2\pm 2,3)$	(11,1±1,3)	(3,3±1,2)
CD44 – рецептор гиалуроновой кислоты	$(84,8\pm4,8)$	$(86,4\pm5,2)$	$(89,5\pm8,2)$	(91,1±8,1)
CD45 – общелейкоцитарный антиген	$(42,1\pm 5,2)$	$(44,4\pm 2,2)$	(62,1±4,1)*	$(66,3\pm3,2)$

^{* –} различия достоверны, Р<0,005.

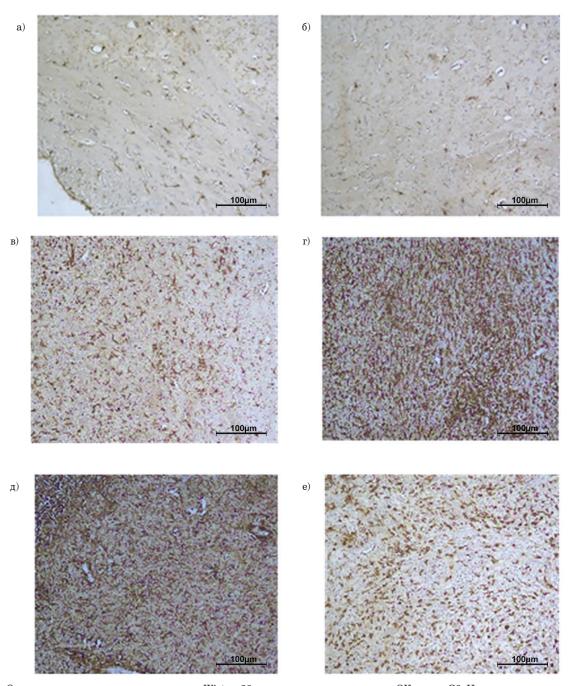
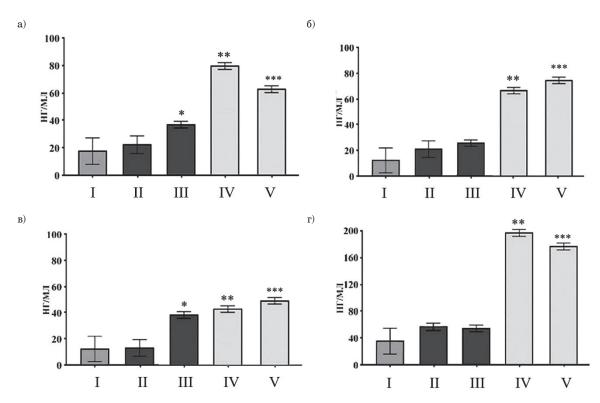


Fig. 4. Tumor tissue in the brain of Wistar rats, 28 days after implantation of C6 OK. Immunohistochemical staining with antibodies against CD86. Additional staining with hematoxylin and eosin: a – intact control (I); δ – CRT (II); s – CRT + PLF (III); s – CRT + VLP (group IV); e – group CRT + PLF + VLP

телами против антигенов CD45 и CD44. Применение иммуноактивных средств увеличивало вклад CD45+-клеток в общее число ККМ (таблица) и уменьшало количество клеток, иммунореактивных в отношении антигена CD90.


Введение ВЛП увеличивало площадь окрашивания микропрепаратов мозга крыс антителами против антигена СD86 – маркера антиген-презентирующих клеток (рис. 4). При этом у крыс I и II групп в ткани опухоли визуализировались единичные CD86+-клетки (рис. 4, a, b). При применении PLF их количество возрастало (рис. 4, b), при этом введение ВЛП у крыс группы IV (рис. 4, b) сопровождалось тотальным окрашиванием центральной части и края опухоли антителами против антиген-презентирующих клеток. Применение PLF в связке с ВЛП вело к усилению окрашивания препаратов мозга антителами против данного антиге-

на (рис. 4, e), что сопровождалось значимыми изменениями цитокинового статуса вещества мозга (рис. 5).

Медиана выживаемости интактных животных группы I составила 25 дней, группы II (контрольные животные) – 44 дня, а группы III – 55 дней (рис. 6). Медиана выживаемости крыс в группе IV составила 60 дней, при этом комбинация PLF+BЛП в группе V составила 74,5 дня.

Обсуждение

Начало XXI в. эксперты Всемирной организации здравоохранения обозначили как «эру иммунотерапии» в нейроонкологии. ИТ позволят регулировать микроокружение ОК [7] и воздействовать на ключевые параметры неопластического процесса, что продемонстрировано в данном исследовании. Стимуляция

Рис. 5. Результаты иммуноферментного анализа ткани мозга крыс с глиомой С6 на содержание: a – ИЛ- β 1; b – ИЛ16; b – ИЛ18; b – ФНО1 α По оси b2: b3. Генетрольная группа, крысы с глиомой С6; b4. Генетрольная ПЛФ; b5 – Группа ВЛП; b7 – Группа ВЛП; b7 – Группа ВЛП+ПЛФ. По оси b7: уровень цитокинов в ткани по результатам ИФА, нг/мл. Число наблюдений по каждой точке – не менее b7. Данные представлены в виде b8 – различия с контрольной группой достоверны при b7. Генетрольной Стьюдента для парных образцов

Fig. 5. Results of enzyme immunoassay of brain tissue of rats with C6 glioma for the content: a – IL- β 1; δ – IL 6; ϵ – IL18; ϵ – TNF1 α . Along the 0X axis: I – control, rats with C6 glioma; II – CRT group; III – PLF group; IV – VLP group; V – VLP+PLF group. Along the 0Y: axis: tissue cytokine levels according to ELISA results, ng/ml. The number of observations for each point is at least 20. Data are presented as M±m; * and ** – differences from the control group are significant at p<0.05 according to Student's t-test for paired samples

О. И. Пак и др. Том XVII, № 2, 2025

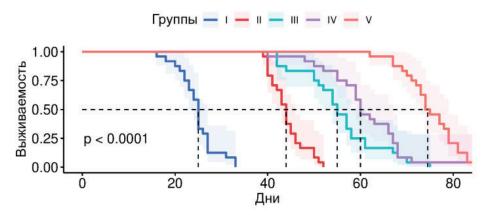


Рис. 6. Медиана выживаемости крыс, задействованных в эксперименте: I – интактные; II – ХЛТ; III – ХЛТ+ РLF; IV – ХЛТ+ ВЛП; V – ХЛТ+ РLF+ВЛП

 $\begin{aligned} \textbf{Fig. 6.} & \text{ Median survival of rats involved in the experiment: } I-\text{intact; } II-\text{CRT; } III-\text{CRT+ PLF; } IV-\text{CRT+ VLP; } V-\text{CRT+ PLF+VLP} \end{aligned}$

TLR4-рецепторов активирует DAMP (Damage associated molecular pattern) или PAMP (pathogen associated molecular pattern), которые действуют через систему внутриклеточных посредников, усиливают продукцию NF-kβ [8], активирующего врожденный иммунитет [9] и продукцию провоспалительных цитокинов, что и показано в нашем эксперименте. В свете сказанного, допустимо утверждать, что одним из ключевых условий реактивации лимфоцитов является активация системы врожденного иммунитета, подавляемой при развитии ГБ.

Способность клеток костного мозга мигрировать в опухолевый очаг является одним из компонентов их репаративной программы, связанной с защитой вещества мозга от повреждения компонентами системы врожденного и приобретенного иммунитета при незавершенном воспалительном процессе в ситуации несостоятельности гематоэнцефалического барьера [10]. В пользу именно такого сценария событий свидетельствуют данные групп III и V, где PLF подавляет сигнальную ось SDF-1 – CXCR4, что сопровождается усилением окрашивания опухоли антителами против CD86.

Роль рецептора СХСR4 в патогенезе ГБ только предстоит изучить. По некоторым данным [11], он воздействует на сигнальный путь PI3K/Akt/mTor, регулирующего процесс пролиферации ОК. Однако вектор такой регуляции существенно зависит от сопутствующего информационного контекста, в качестве которого в нашем исследовании выступает ВЛП.

Как следует из эксперимента, введение ВЛП сопровождается запуском процессов презентации антигена, на что указывают довольно интенсивное окрашивание опухоли антителами против CD86 и увеличение содержания в мозге воспалительных цитокинов. При этом важно, что у крыс групп V общее изменение цитокинового статуса вещества мозга не сопровождается столь значительным увеличением содержания в опухоли CD86+-клеток, как в группе IV, что следует объяснить комплексным эффектом использования ВЛП в связке с PLF, поскольку подобная картина отсутствует в группе III. Вероятно, для пролонгации ремиссии после курса лечения по стандартному протоколу применение ВЛП следует комбинировать с антагонистами рецептора CXCR4, что нуждается в дальнейшем изучении.

Содержание ИЛ-β1, ИЛ 6 и ФНО1α в ткани мозга крыс группы IV несколько выше, чем в группе V, что указывает в пользу более сложного механизма регуляции цитокинового статуса вещества мозга [12], чем принято считать. Тем не менее увеличение общей выживаемости экспериментальных животных указывает на правильность выбранного пути и необходимость движения в этом направлении.

Заключение

Комплексное применение ВЛП и Плериксафора модифицирует микроокружение ОК и увеличивает выживаемость экспериментальных животных с глиомой С6. **Конфликт интересов.** Авторы заявляют об отсутствии конфликта интересов. **Conflict of interest.** The author declares no conflict of interest.

Финансирование. Авторы заявляют о финансировании работы из средств гранта ДВФУ-24-01-3.04-0015. **Financing.** The authors declare funding for the work from the DVFU-24-01-3.04-0015 grant.

Литература / References

- Kriuchkovskaia V. A., Eames E. K., Riggins R. B., Harley B. A. C. Acquired Temozolomide Resistance Instructs Patterns of Glioblastoma Behavior in Gelatin Hydrogels. Adv Healthc Mater. 2024:e2400779. Doi: 10.1002/adhm.202400779.
- Fan D., Yue Q., Chen J. et al. Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells. Oncoimmunology. 2021;10(1):1932061.
 Doi: 10.1080/2162402X.2021.1932061.
- Stepanenko A. A., Sosnovtseva A. O., Valikhov M. P. et al. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol. 2024;(15):1326753. Doi: 10.3389/fimmu.2024.1326753.
- Cancilla D., Rettig M. P., Karpova D. et al. Targeting CXCR4, VLA-4, and CXCR2 for hematopoietic stem cell mobilization. Blood Adv. 2024;8(6):1379–1383. Doi: 10.1182/bloodadvances.2023011653.
- Solomou G., Young A. M. H., Bulstrode H. J. C. J. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol. 2024. 7 May. Doi: 10.1002/1878-0261.13657.
- Патент РФ РФ2722268. Способ биотерапии крыс с перивитой глиобластомой / И. С. Брюховецкий. Опубл. 28.05.2020. [Patent RF2722268. Method of Biotherapy of Rats with Perivite Glioblastoma; I. S. Bryukhovetsky. Publ. 28.05.2020. (In Russ.)].

- Squalli Houssaini A., Lamrabet S., Nshizirungu J. P., Senhaji N. et al. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel). 2024;12(6):655. Doi: 10.3390/ vaccines12060655.
- Varma V. P., Bankala R., Kumar A. et al. Differential modulation of innate immune response by lipopolysaccharide of Leptospira. Open Biol. 2023;13(11):230101. Doi: 10.1098/rsob.230101.
- Liu J., Kang R., Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol. 2024;45(4):274–287. Doi: 10.1016/j.it.2024.02.003.
- Matias D., Dubois L. G., Pontes B. et al. GBM-Derived Wnt3a Induces M2-Like Phenotype in Microglial Cells Through Wnt/beta-Catenin Signaling. Mol Neurobiol. 2019;56(2):1517–1530. Doi: 10.1007/s12035-018-1150-5.
- Yin X., Xia K., Peng S. et al. ABCF1/CXCL12/CXCR4
 Enhances Glioblastoma Cell Proliferation, Migration, and Invasion by Activating the PI3K/AKT Signal Pathway. Dev Neurosci. 2024;46(3):210–220. Doi: 10.1159/000533130.
- Alkailani M. I., Aittaleb M., Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci. 2022;(15):1017568.
 Doi: 10.3389/fnmol.2022.1017568.

Сведения об авторах

- Олег Игоревич Пак кандидат медицинских наук, доцент, врач-нейрохирург Медицинского комплекса Дальневосточного федерального университета (г. Владивосток, Россия);
- Александра Асадовна Косьянова кандидат биологических наук, доцент Департамента фармации и фармакологии Школы медицины и наук о жизни Дальневосточного федерального университета (г. Владивосток, Россия);
- Сергей Викторович Зайцев кандидат биологических наук, заведующий лабораторией молекулярной и
- клеточной нейробиологии Дальневосточного федерального университета (г. Владивосток, Россия);
- Ева Сергеевна Пугачева аспирант, ассистент Департамента фундаментальной медицины Школы медицины и наук о жизни Дальневосточного федерального университета (г. Владивосток, Россия);
- Игорь Степанович Брюховецкий доктор медицинских наук, профессор Департамента фармации и фармакологии Школы медицины и наук о жизни Дальневосточного федерального университета (г. Владивосток, Россия).

Information about the authors

- Oleg I. Pak Cand. of Sci. (Med.), Associate Professor, Neurosurgeon at the Medical Complex, Far Eastern Federal University (Vladivostok, Russia);
- Aleksandra A. Kosianova Cand. of Sci. (Biol.), Associate Professor at the Department of Pharmacy and Pharmacology, School of Medicine & Life Science, Far Eastern Federal University (Vladivostok, Russia);
- Sergei V. Zaitsev Cand. of Sci. (Biol.), Head at the Laboratory of Molecular and Cellular Neuroscience, Far Eastern Federal University (Vladivostok, Russia);
- Eva S. Pugacheva Postgraduate Student, Assistant at the Department of Fundamental Medicine, School of Medicine & Life Science, Far Eastern Federal University (Vladivostok, Russia);
- Igor S. Bryukhovetskiy Dr. of Sci. (Med.), Professor, at the Department of Pharmacy and Pharmacology, School of Medicine & Life Science, Far Eastern Federal University (Vladivostok, Russia).

Принята к публикации 23.05.2025

Accepted 23.05.2025