Preview

Российский нейрохирургический журнал имени профессора А. Л. Поленова

Расширенный поиск

Медиаторы сна и бодрствования как лабораторные биомаркеры постинсультной гиперсомноленции (обзор литературы)

https://doi.org/10.56618/20712693_2022_14_4_133

Аннотация

В статье приводятся современные данные о роли нейротрансмиттерных систем в регуляции цикла «сон-бодрствование». Рассмотрены базовые принципы функционирования систем пробуждения, NREM- и REM-сна, дана характеристика ведущим медиаторам сна и бодрствования (мелатонин, орексины, ГАМК, глутамат, норадреналин, гистамин, дофамин, серотонин, ацетилхолин). Учитывая высокую актуальность профилактики осложнений инсульта и доказанную связь острого нарушения мозгового кровообращения с расстройствами спектра гиперсомноленции, приведены результаты анализа современных исследований по проблеме биомаркеров гиперсомноленции. Роль некоторых медиаторов, участвующих в регуляции процессов сна и бодрствования, остается не до конца изученной, что позволяет рассматривать их в качестве потенциальных биомаркеров гиперсомноленции. Возможными претендентами являются орексин-А, глутамат и ГАМК, также ацетилхолин. В данной статье приведен обзор имеющейся на данном этапе литературы о лабораторных маркерах гиперсомноленции и возможностях их оценки у пациентов с острым ишемическим инсультом.

Об авторах

И. К. Терновых
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Терновых Иван Константинович.

Аккуратова ул., 2, Санкт-Петербург, 197341



М. П. Топузова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Топузова Мария Петровна.

Аккуратова ул., 2, Санкт-Петербург, 197341



О. А. Портик
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Портик Ольга Александровна.

Аккуратова ул., 2, Санкт-Петербург, 197341



Т. A. Шустова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Шустова Татьяна Алексеевна.

Аккуратова ул., 2, Санкт-Петербург, 197341



Н. Е. Дудникова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Дудникова Наталия Евгеньевна.

Аккуратова ул., 2, Санкт-Петербург, 197341



Т. М. Алексеева
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В.А. Алмазова» МЗ РФ
Россия

Алексеева Татьяна Михайловна.

Аккуратова ул., 2, Санкт-Петербург, 197341



Список литературы

1. Feigin VL, Lawes CM, Bennett DA , Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53. https://doi.org/10.1016/s1474–4422(03)00266‑7

2. Feigin VL, Varakin YY , Kravchenko MA , Piradov MA , Tanashyan MM , Gnedovskaya EV, Stakhovskaya LV, Shamalov NA, Krishnamurthi R, Bhattacharjee R, Parmar P, Hussein T, Barker-Collo S. A new approach to stroke prevention in Russia. Hum Physiol. 2016;42:854–857. https://doi.org/10.1134/S0362119716080053

3. Pérez-Carbonell L, Bashir S. Narrative review of sleep and stroke. J Thorac Dis. 2020;12(Suppl 2): S 176-S 190. https://doi.org/10.21037/jtd-cus‑2020–002

4. Krishnamurthi RV, Feigin VL, Forouzanfar MH et al. Global and regional burden of firstever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1(5):259–281. https://doi.org/10.1016/S2214–109X(13)70089–5

5. Терновых И. К., Алексеева Т. М., Коростовцева Л. С., Свиряев Ю. В., Гаврилов Ю. В. Гиперсомния и избыточная дневная сонливость при ишемическом инсульте. Артериальная гипертензия. 2021;27(5):488–498. https://doi.org/10.18705/1607–419X‑2021‑27‑5‑488‑498

6. Lammers GJ, Bassetti CLA , Dolenc-Groselj L et al. Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts. Sleep Med Rev. 2020;52:101306. https://doi.org/10.1016/j.smrv.2020.101306

7. Ding Q, Whittemore R, Redeker N. Excessive daytime sleepiness in stroke survivors: an integrative review. Biol Res Nurs. 2016;18(4):420–431. https://doi.org/10.1177/1099800415625285

8. Leppävuori A, Pohjasvaara T, Vataja R, Kaste M, Erkinjuntti T. Insomnia in ischemic stroke patients. Cerebrovasc Dis. 2002;14(2):90–97. https://doi.org/10.1159/000064737

9. Ferre A, Ribó M, Rodríguez-Luna D, et al. Strokes and their relationship with sleep and sleep disorders. Neurologia. 2013;28(2):103–118. https://doi.org/10.1016/j.nrl.2010.09.016

10. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG . Electroencephalogr Clin Neurophysiol. 1949;1(4):455–473.

11. Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol. 2020;15:143–151. https://doi.org/10.1016/j.cophys.2019.12.012

12. Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017;93(4):747–765. https://doi.org/10.1016/j.neuron.2017.01.014

13. В. М. Ковальзон. Основы сомнологии: физиология и нейрохимия цикла “бодрствование-сон” — Москва: Бином. Лаборатория знаний, 2011. — с. 239.

14. Brown RE , Basheer R, McKenna JT, Strecker RE , McCarley RW . Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–1187. https://doi.org/10.1152/physrev.00032.2011

15. Wisden W, Yu X , Franks NP. GA BA Receptors and the Pharmacology of Sleep. Handb Exp Pharmacol. 2019;253:279–304. https://doi.org/10.1007/164_2017_56

16. Basheer R, Strecker RE , Thakkar MM , McCarley RW . Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73(6):379–396. https://doi.org/10.1016/j.pneurobio.2004.06.004

17. Lazarus M, Oishi Y, Bjorness TE, Greene RW . Gating and the Need for Sleep: Dissociable Effects of Adenosine A1 and A2A Receptors. Front Neurosci. 2019;13:740. https://doi.org/10.3389/fnins.2019.00740

18. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci. 2006;26(31):8092–8100. https://doi.org/10.1523/JNEUROSCI.2181–06.2006

19. Sakai K, Crochet S, Onoe H. P ontine structures and mechanisms involved in the generation of paradoxical (REM ) sleep. Arch Ital Biol. 2001;139(1–2):93–107.

20. Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GA BAergic neurons control sleep. Sleep Med Rev. 2017;32:85–94. https://doi.org/10.1016/j.smrv.2016.03.002

21. Erickson ETM, Ferrari LL , Gompf HS, Anaclet C. D ifferential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci. 2019;13:755. https://doi.org/10.3389/fnins.2019.00755

22. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–594. https://doi.org/10.1038/nature04767

23. Peever J, Fuller PM . The Biology of REM Sleep. Curr Biol. 2017;27(22): R 1237-R 1248. https://doi.org/10.1016/j.cub.2017.10.026

24. Chen KS, Xu M, Zhang Z et al. A Hypothalamic Switch for REM and Non-REM Sleep. Neuron. 2018;97(5):1168–1176.e4. https://doi.org/10.1016/j.neuron.2018.02.005

25. Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience. 2019;406:314–324. https://doi.org/10.1016/j.neuroscience.2019.03.020

26. Luppi PH, Gervasoni D, Verret L et al. Paradoxical (REM ) sleep genesis: the switch from an aminergic-cholinergic to a GA BAergicglutamatergic hypothesis. J Physiol Paris. 2006;100(5–6):271–283. https://doi.org/10.1016/j.jphysparis.2007.05.006

27. Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol. 2021;1297:65–82. https://doi.org/10.1007/978‑3‑030‑61663‑2_5

28. Barchas JD, Lerner AB. Localization of melatonin in the nervous system. J Neurochem. 1964;11:489–491. https://doi.org/10.1111/j.1471–4159.1964.tb11608.x

29. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP , Poeggeler B, Hardeland R. M elatonin: Nature’s most versatile biological signal?. FEBS J. 2006;273(13):2813–2838. https://doi.org/10.1111/j.1742–4658.2006.05322.x

30. Hardeland R. M elatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci. 2008;65(13):2001–2018. https://doi.org/10.1007/s00018–008–8001-x

31. Carrillo-Vico A, Calvo JR, Abreu P, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004;18(3):537–539. https://doi.org/10.1096/fj.03–0694fje

32. Захаров А. В., Хивинцева Е. В., Пятин В. Ф., Сергеева М. С., Антипов О. И. Мелатонин — известные и новые области клинического применения. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2017;117(4–2):74–78. https://doi.org/10.17116/jnevro20171174274–78

33. Benloucif S, Burgess HJ, Klerman EB et al. Measuring melatonin in humans. J Clin Sleep Med. 2008;4(1):66–69.

34. Blazejova K, Illnerova H, Hajek I, Nevsimalova S. Circadian rhythm in salivary melatonin in narcoleptic patients. Neurosci Lett. 2008;437(2):162–164. https://doi.org/10.1016/j.neulet.2008.03.076

35. Videnovic A, Noble C, Reid KJ et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014;71(4):463–469. https://doi.org/10.1001/jamaneurol.2013.6239

36. Landzberg D, Trotti LM . Is Idiopathic Hypersomnia a Circadian Rhythm Disorder? Curr Sleep Med Rep. 2019;5(4):201–206. https://doi.org/10.1007/s40675–019–00154-x

37. De Lecea L, Kilduff TS, Peyron C et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–327. https://doi.org/10.1073/pnas.95.1.322

38. Sakurai T, Amemiya A, Ishii M et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–585. https://doi.org/10.1016/S0092–8674(00)80949‑6

39. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40. https://doi.org/10.1016/S0140–6736(99)05582‑8

40. Thannickal TC, Moore RY , Nienhuis R et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–474. https://doi.org/10.1016/S0896–6273(00)00058‑1

41. Peyron C, Faraco J, Rogers W et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–997. https://doi.org/10.1038/79690

42. Brisbare-Roch C, Dingemanse J, Koberstein R et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–155. https://doi.org/10.1038/nm1544

43. Taheri S, Mahmoodi M, Opacka-Juffry J, Ghatei MA , Bloom SR. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 1999;457(1):157–161. https://doi.org/10.1016/s0014–5793(99)01030‑3

44. Håkansson M, de Lecea L, Sutcliffe JG, Yanagisawa M, Meister B. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol. 1999;11(8):653–663. https://doi.org/10.1046/j.1365–2826.1999.00378.x

45. Milbank E, López M. O rexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne). 2019;10:830. https://doi.org/10.3389/fendo.2019.00830

46. Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–1181. https://doi.org/10.1016/s0896–6273(02)01132‑7

47. Shen YC, Sun X , Li L, Zhang HY, Huang ZL, Wang YQ . Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci. 2022;23(9):4599. https://doi.org/10.3390/ijms23094599

48. Torrealba F, Yanagisawa M, Saper CB. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience. 2003;119(4):1033–1044. https://doi.org/10.1016/s0306–4522(03)00238‑0

49. Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro. 2018;5(4): ENEURO .0228–18.2018. https://doi.org/10.1523/ENEURO.0228–18.2018

50. Mignot E, Lammers GJ, Ripley B et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–1562. https://doi.org/10.1001/archneur.59.10.1553

51. Golden EC, Lipford MC. Narcolepsy: Diagnosis and management. Cleve Clin J Med. 2018;85(12):959–969. https://doi.org/10.3949/ccjm.85a.17086

52. Dauvilliers Y, Baumann CR, Carlander B et al. CSF hypocretin‑1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74(12):1667–1673. https://doi.org/10.1136/jnnp.74.12.1667

53. Coelho FM, Pradella-Hallinan M, Pedrazzoli M et al. Traditional biomarkers in narcolepsy: experience of a Brazilian sleep centre. Arq Neuropsiquiatr. 2010;68(5):712–715. https://doi.org/10.1590/s0004–282x2010000500007

54. Pérez-Carbonell L, Leschziner G. Clinical update on central hypersomnias. J Thorac Dis. 2018;10(Suppl 1): S 112-S 123. https://doi.org/10.21037/jtd.2017.10.161

55. Omori Y, Kanbayashi T, Imanishi A et al. Orexin/hypocretin levels in the cerebrospinal fluid and characteristics of patients with myotonic dystrophy type 1 with excessive daytime sleepiness. Neuropsychiatr Dis Treat. 2018;14:451–457. https://doi.org/10.2147/NDT.S158651

56. Poryazova R, Benninger D, Waldvogel D, Bassetti CL. Excessive daytime sleepiness in Parkinson’s disease: characteristics and determinants. Eur Neurol. 2010;63(3):129–135. https://doi.org/10.1159/000276402

57. Gan J, Chen Z, Han J et al. Orexin-A in Patients With Lewy Body Disease: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:765701. https://doi.org/10.3389/fendo.2021.765701

58. Kotan D, Deniz O, Aygul R, Yildirim A. A cute cerebral ischaemia: relationship between serum and cerebrospinal fluid orexin-A concentration and infarct volume. J Int Med Res. 2013;41(2):404–409. https://doi.org/10.1177/0300060513477002

59. Xu D, Kong T, Cheng B et al. Orexin-A alleviates cerebral ischemiareperfusion injury by inhibiting endoplasmic reticulum stressmediated apoptosis. Mol Med Rep. 2021;23(4):266. https://doi.org/10.3892/mmr.2021.11905

60. Бонь Е. И. Характеристика медиаторов и модуляторов, их биологическая роль в функционировании нервной системы. Вестник НовГУ. 2021;1(122):6–14.

61. Spiering MJ. The discovery of GA BA in the brain. J Biol Chem. 2018;293(49):19159–19160. https://doi.org/10.1074/jbc.CL118.006591

62. Ganguly K, Schinder AF, Wong ST, Poo M. GA BA itself promotes the developmental switch of neuronal GA BAergic responses from excitation to inhibition. Cell. 2001;105(4):521–532. https://doi.org/10.1016/s0092–8674(01)00341‑5

63. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GA BA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87(4):1215–1284. https://doi.org/10.1152/physrev.00017.2006

64. Yu X , Li W, Ma Y et al. GA BA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22(1):106–119. https://doi.org/10.1038/s41593‑018‑0288‑9

65. Chen CR, Zhong YH, Jiang S et al. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife. 2021;10:e69909. https://doi.org/10.7554/eLife.69909

66. Wang Z, Zhong YH, Jiang S, Qu WM , Huang ZL, Chen CR. Case Report: Dysfunction of the Paraventricular Hypothalamic Nucleus Area Induces Hypersomnia in Patients. Front Neurosci. 2022;16:830474. https://doi.org/10.3389/fnins.2022.830474

67. Rönnbäck L, Johansson B. Long-Lasting Pathological Mental Fatigue After Brain Injury-A Dysfunction in Glutamate Neurotransmission? Front Behav Neurosci. 2022;15:791984. https://doi.org/10.3389/fnbeh.2021.791984

68. Kim J, Guo L, Hishinuma A et al. Recovery of consolidation after sleep following stroke-interaction of slow waves, spindles, and GA BA. Cell Rep. 2022;38(9):110426. https://doi.org/10.1016/j.celrep.2022.110426

69. He WM , Ying-Fu L, Wang H, Peng YP . Delayed treatment of α5 GA BAA receptor inverse agonist improves functional recovery by enhancing neurogenesis after cerebral ischemia-reperfusion injury in rat MCAO model. Sci Rep. 2019;9(1):2287. https://doi.org/10.1038/s41598‑019‑38750‑0

70. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307. https://doi.org/10.1007/3–540–05462–6_2

71. Chen J, Cheuk IWY , Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol. 2019;31:46–53. https://doi.org/10.1016/j.suronc.2019.09.003

72. Brown RE , Basheer R, McKenna JT, Strecker RE , McCarley RW . Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–1187. https://doi.org/10.1152/physrev.00032.2011

73. Oz O, Matityahu L, Mizrahi-Kliger A et al. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. Elife. 2022;11:e76039. https://doi.org/10.7554/eLife.76039

74. Nishino S, Mignot E. P harmacological aspects of human and canine narcolepsy. Prog Neurobiol. 1997;52(1):27–78. https://doi.org/10.1016/s0301–0082(96)00070‑6

75. Xu M, Chung S, Zhang S et al. Basal forebrain circuit for sleepwake control. Nat Neurosci. 2015;18(11):1641–1647. https://doi.org/10.1038/nn.4143

76. Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep. 2014;37(12):1941–1951. https://doi.org/10.5665/sleep.4246

77. Anaclet C, Pedersen NP, Ferrari LL et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015;6:8744. https://doi.org/10.1038/ncomms9744

78. Pak VM, Dai F, Keenan BT, Gooneratne NS, Pack AI. Lower plasma choline levels are associated with sleepiness symptoms. Sleep Med. 2018;44:89–96. https://doi.org/10.1016/j.sleep.2017.10.004

79. Jones BE, Bobillier P, Pin C, Jouvet M. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res. 1973;58(1):157–177. https://doi.org/10.1016/0006–8993(73)90830‑5

80. Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HIL. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer’s disease. Sleep Med Rev. 2022;62:101592. https://doi.org/10.1016/j.smrv.2022.101592

81. Jones BE. Arousal and sleep circuits. Neuropsychopharmacology. 2020;45(1):6–20. https://doi.org/10.1038/s41386‑019‑0444‑2

82. Knie B, Mitra MT, Logishetty K, Chaudhuri KR. Excessive daytime sleepiness in patients with Parkinson’s disease. CNS Drugs. 2011;25(3):203–212. https://doi.org/10.2165/11539720‑000000000‑00000

83. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006;26(1):193–202. https://doi.org/10.1523/JNEUROSCI.2244–05.2006

84. Grady FS, Boes AD , Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci. 2022;16:930514. https://doi.org/10.3389/fnins.2022.930514

85. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L . VTA dopaminergic neurons regulate ethologically relevant sleepwake behaviors. Nat Neurosci. 2016;19(10):1356–1366. https://doi.org/10.1038/nn.4377

86. McGinty DJ, Harper RM . Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976;101(3):569–575. https://doi.org/10.1016/0006–8993(76)90480‑7

87. Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev. 2021;128:282–293. https://doi.org/10.1016/j.neubiorev.2021.06.022

88. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31(3):187–199. https://doi.org/10.1111/j.1365–2885.2008.00944.x

89. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

90. Wisor J. M odafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol. 2013;4:139. https://doi.org/10.3389/fneur.2013.00139

91. Wilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M . Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin. 2018;18:630–637. https://doi.org/10.1016/j.nicl.2018.03.001

92. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci. 2002;22(17):7695–7711. https://doi.org/10.1523/JNEU-ROSCI.22–17–07695.2002

93. Atkin T, Comai S, Gobbi G. D rugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol Rev. 2018;70(2):197–245. https://doi.org/10.1124/pr.117.014381


Рецензия

Для цитирования:


Терновых И.К., Топузова М.П., Портик О.А., Шустова Т.A., Дудникова Н.Е., Алексеева Т.М. Медиаторы сна и бодрствования как лабораторные биомаркеры постинсультной гиперсомноленции (обзор литературы). Российский нейрохирургический журнал имени профессора А. Л. Поленова. 2022;14(4):133-143. https://doi.org/10.56618/20712693_2022_14_4_133

For citation:


Ternovykh I.K., Topuzova M.P., Portik O.A., Shustova T.A., Dudnikova N.E., Alekseeva T.M. Sleep and wake mediators as laboratory biomarkers of post-stroke hypersomnolence (literature review). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(4):133-143. (In Russ.) https://doi.org/10.56618/20712693_2022_14_4_133

Просмотров: 52


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)