Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Sleep and wake mediators as laboratory biomarkers of post-stroke hypersomnolence (literature review)

https://doi.org/10.56618/20712693_2022_14_4_133

Abstract

The article presents current data on the role of neurotransmitter systems in the regulation of the sleep-wake cycle. The basic principles of the functioning of the systems of awakening, NREM and REM sleep are considered, the leading mediators of sleep and wakefulness (melatonin, orexins, GABA, glutamate, norepinephrine, histamine, dopamine, serotonin, acetylcholine) are characterized. Given the high relevance of prevention of stroke complications and the proven relationship between acute cerebrovascular accident and hypersomnolence spectrum disorders, the results of the analysis of modern studies on the problem of hypersomnolence biomarkers are presented. The role of some mediators involved in the regulation of the processes of sleep and wakefulness remains not fully understood, which allows us to consider them as potential biomarkers of hypersomnolence. Possible contenders are orexin-A, glutamate and GABA, also acetylcholine. This article provides a review of the currently available literature on laboratory markers of hypersomnolence and the possibilities of their assessment in patients with acute ischemic stroke.

About the Authors

I. K. Ternovykh
Almazov National Medical Research Centre
Russian Federation

Ivan K. Ternovykh.

2, Akkuratova st., Saint Petersburg, 197341



M. P. Topuzova
Almazov National Medical Research Centre
Russian Federation

Mariya P. Topuzova.

2, Akkuratova st., Saint Petersburg, 197341



O. A. Portik
Almazov National Medical Research Centre
Russian Federation

Olga A. Portik.

2, Akkuratova st., Saint Petersburg, 197341



T. A. Shustova
Almazov National Medical Research Centre
Russian Federation

Tat’yana A. Shustova.

2, Akkuratova st., Saint Petersburg, 197341



N. E. Dudnikova
Almazov National Medical Research Centre
Russian Federation

Nataliya E. Dudnikova.

2, Akkuratova st., Saint Petersburg, 197341



T. M. Alekseeva
Almazov National Medical Research Centre
Russian Federation

Tat’yana M. Alekseeva.

2, Akkuratova st., Saint Petersburg, 197341



References

1. Feigin VL, Lawes CM, Bennett DA , Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53. https://doi.org/10.1016/s1474–4422(03)00266‑7

2. Feigin VL, Varakin YY , Kravchenko MA , Piradov MA , Tanashyan MM , Gnedovskaya EV, Stakhovskaya LV, Shamalov NA, Krishnamurthi R, Bhattacharjee R, Parmar P, Hussein T, Barker-Collo S. A new approach to stroke prevention in Russia. Hum Physiol. 2016;42:854–857. https://doi.org/10.1134/S0362119716080053

3. Pérez-Carbonell L, Bashir S. Narrative review of sleep and stroke. J Thorac Dis. 2020;12(Suppl 2): S 176-S 190. https://doi.org/10.21037/jtd-cus‑2020–002

4. Krishnamurthi RV, Feigin VL, Forouzanfar MH et al. Global and regional burden of firstever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1(5):259–281. https://doi.org/10.1016/S2214–109X(13)70089–5

5. Ternovykh IK, Alekseeva TM, Korostovtseva L S, Sviryaev YuV, Gavrilov Yu V. Hypersomnia and excessive daytime sleepiness in ischemic stroke. «Arterial’naya Gipertenziya». 2021;27(5):488–498. (In Russ.) https://doi.org/10.18705/1607–419X‑2021‑27‑5‑488‑498

6. Lammers GJ, Bassetti CLA , Dolenc-Groselj L et al. Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts. Sleep Med Rev. 2020;52:101306. https://doi.org/10.1016/j.smrv.2020.101306

7. Ding Q, Whittemore R, Redeker N. Excessive daytime sleepiness in stroke survivors: an integrative review. Biol Res Nurs. 2016;18(4):420–431. https://doi.org/10.1177/1099800415625285

8. Leppävuori A, Pohjasvaara T, Vataja R, Kaste M, Erkinjuntti T. Insomnia in ischemic stroke patients. Cerebrovasc Dis. 2002;14(2):90–97. https://doi.org/10.1159/000064737

9. Ferre A, Ribó M, Rodríguez-Luna D, et al. Strokes and their relationship with sleep and sleep disorders. Neurologia. 2013;28(2):103–118. https://doi.org/10.1016/j.nrl.2010.09.016

10. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG . Electroencephalogr Clin Neurophysiol. 1949;1(4):455–473.

11. Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol. 2020;15:143–151. https://doi.org/10.1016/j.cophys.2019.12.012

12. Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron. 2017;93(4):747–765. https://doi.org/10.1016/j.neuron.2017.01.014

13. Koval’zon VM. Fundamentals of somnology: physiology and neurochemistry of the wake-sleep cycle — Moskva: Binom. Laboratoriya znanij, 2011. — p. 239. (In Russ.).

14. Brown RE , Basheer R, McKenna JT, Strecker RE , McCarley RW . Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–1187. https://doi.org/10.1152/physrev.00032.2011

15. Wisden W, Yu X , Franks NP. GA BA Receptors and the Pharmacology of Sleep. Handb Exp Pharmacol. 2019;253:279–304. https://doi.org/10.1007/164_2017_56

16. Basheer R, Strecker RE , Thakkar MM , McCarley RW . Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73(6):379–396. https://doi.org/10.1016/j.pneurobio.2004.06.004

17. Lazarus M, Oishi Y, Bjorness TE, Greene RW . Gating and the Need for Sleep: Dissociable Effects of Adenosine A1 and A2A Receptors. Front Neurosci. 2019;13:740. https://doi.org/10.3389/fnins.2019.00740

18. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci. 2006;26(31):8092–8100. https://doi.org/10.1523/JNEUROSCI.2181–06.2006

19. Sakai K, Crochet S, Onoe H. P ontine structures and mechanisms involved in the generation of paradoxical (REM ) sleep. Arch Ital Biol. 2001;139(1–2):93–107.

20. Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GA BAergic neurons control sleep. Sleep Med Rev. 2017;32:85–94. https://doi.org/10.1016/j.smrv.2016.03.002

21. Erickson ETM, Ferrari LL , Gompf HS, Anaclet C. D ifferential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci. 2019;13:755. https://doi.org/10.3389/fnins.2019.00755

22. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441(7093):589–594. https://doi.org/10.1038/nature04767

23. Peever J, Fuller PM . The Biology of REM Sleep. Curr Biol. 2017;27(22): R 1237-R 1248. https://doi.org/10.1016/j.cub.2017.10.026

24. Chen KS, Xu M, Zhang Z et al. A Hypothalamic Switch for REM and Non-REM Sleep. Neuron. 2018;97(5):1168–1176.e4. https://doi.org/10.1016/j.neuron.2018.02.005

25. Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience. 2019;406:314–324. https://doi.org/10.1016/j.neuroscience.2019.03.020

26. Luppi PH, Gervasoni D, Verret L et al. Paradoxical (REM ) sleep genesis: the switch from an aminergic-cholinergic to a GA BAergicglutamatergic hypothesis. J Physiol Paris. 2006;100(5–6):271–283. https://doi.org/10.1016/j.jphysparis.2007.05.006

27. Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol. 2021;1297:65–82. https://doi.org/10.1007/978‑3‑030‑61663‑2_5

28. Barchas JD, Lerner AB. Localization of melatonin in the nervous system. J Neurochem. 1964;11:489–491. https://doi.org/10.1111/j.1471–4159.1964.tb11608.x

29. Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP , Poeggeler B, Hardeland R. M elatonin: Nature’s most versatile biological signal?. FEBS J. 2006;273(13):2813–2838. https://doi.org/10.1111/j.1742–4658.2006.05322.x

30. Hardeland R. M elatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci. 2008;65(13):2001–2018. https://doi.org/10.1007/s00018–008–8001-x

31. Carrillo-Vico A, Calvo JR, Abreu P, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004;18(3):537–539. https://doi.org/10.1096/fj.03–0694fje

32. Zakharov AV, Khivintseva EV, Pytin VF, Sergeeva MS, Antipov OI. Melatonin — known problems and perspectives of clinical usage. Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova. 2017;117(4–2):74–78. (In R uss.). https://doi.org/10.17116/jnevro20171174274–78

33. Benloucif S, Burgess HJ, Klerman EB et al. Measuring melatonin in humans. J Clin Sleep Med. 2008;4(1):66–69.

34. Blazejova K, Illnerova H, Hajek I, Nevsimalova S. Circadian rhythm in salivary melatonin in narcoleptic patients. Neurosci Lett. 2008;437(2):162–164. https://doi.org/10.1016/j.neulet.2008.03.076

35. Videnovic A, Noble C, Reid KJ et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014;71(4):463–469. https://doi.org/10.1001/jamaneurol.2013.6239

36. Landzberg D, Trotti LM . Is Idiopathic Hypersomnia a Circadian Rhythm Disorder? Curr Sleep Med Rep. 2019;5(4):201–206. https://doi.org/10.1007/s40675–019–00154-x

37. De Lecea L, Kilduff TS, Peyron C et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–327. https://doi.org/10.1073/pnas.95.1.322

38. Sakurai T, Amemiya A, Ishii M et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–585. https://doi.org/10.1016/S0092–8674(00)80949‑6

39. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40. https://doi.org/10.1016/S0140–6736(99)05582‑8

40. Thannickal TC, Moore RY , Nienhuis R et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–474. https://doi.org/10.1016/S0896–6273(00)00058‑1

41. Peyron C, Faraco J, Rogers W et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–997. https://doi.org/10.1038/79690

42. Brisbare-Roch C, Dingemanse J, Koberstein R et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–155. https://doi.org/10.1038/nm1544

43. Taheri S, Mahmoodi M, Opacka-Juffry J, Ghatei MA , Bloom SR. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 1999;457(1):157–161. https://doi.org/10.1016/s0014–5793(99)01030‑3

44. Håkansson M, de Lecea L, Sutcliffe JG, Yanagisawa M, Meister B. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol. 1999;11(8):653–663. https://doi.org/10.1046/j.1365–2826.1999.00378.x

45. Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne). 2019;10:830. https://doi.org/10.3389/fendo.2019.00830

46. Li Y, Gao XB, Sakurai T, van den Pol AN. Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–1181. https://doi.org/10.1016/s0896–6273(02)01132‑7

47. Shen YC, Sun X , Li L, Zhang HY, Huang ZL, Wang YQ . Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci. 2022;23(9):4599. https://doi.org/10.3390/ijms23094599

48. Torrealba F, Yanagisawa M, Saper CB. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience. 2003;119(4):1033–1044. https://doi.org/10.1016/s0306–4522(03)00238‑0

49. Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro. 2018;5(4): ENEURO .0228–18.2018. https://doi.org/10.1523/ENEURO.0228–18.2018

50. Mignot E, Lammers GJ, Ripley B et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–1562. https://doi.org/10.1001/archneur.59.10.1553

51. Golden EC, Lipford MC. Narcolepsy: Diagnosis and management. Cleve Clin J Med. 2018;85(12):959–969. https://doi.org/10.3949/ccjm.85a.17086

52. Dauvilliers Y, Baumann CR, Carlander B et al. CSF hypocretin‑1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74(12):1667–1673. https://doi.org/10.1136/jnnp.74.12.1667

53. Coelho FM, Pradella-Hallinan M, Pedrazzoli M et al. Traditional biomarkers in narcolepsy: experience of a Brazilian sleep centre. Arq Neuropsiquiatr. 2010;68(5):712–715. https://doi.org/10.1590/s0004–282x2010000500007

54. Pérez-Carbonell L, Leschziner G. Clinical update on central hypersomnias. J Thorac Dis. 2018;10(Suppl 1): S 112-S 123. https://doi.org/10.21037/jtd.2017.10.161

55. Omori Y, Kanbayashi T, Imanishi A et al. Orexin/hypocretin levels in the cerebrospinal fluid and characteristics of patients with myotonic dystrophy type 1 with excessive daytime sleepiness. Neuropsychiatr Dis Treat. 2018;14:451–457. https://doi.org/10.2147/NDT.S158651

56. Poryazova R, Benninger D, Waldvogel D, Bassetti CL. Excessive daytime sleepiness in Parkinson’s disease: characteristics and determinants. Eur Neurol. 2010;63(3):129–135. https://doi.org/10.1159/000276402

57. Gan J, Chen Z, Han J et al. Orexin-A in Patients With Lewy Body Disease: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:765701. https://doi.org/10.3389/fendo.2021.765701

58. Kotan D, Deniz O, Aygul R, Yildirim A. A cute cerebral ischaemia: relationship between serum and cerebrospinal fluid orexin-A concentration and infarct volume. J Int Med Res. 2013;41(2):404–409. https://doi.org/10.1177/0300060513477002

59. Xu D, Kong T, Cheng B et al. Orexin-A alleviates cerebral ischemiareperfusion injury by inhibiting endoplasmic reticulum stressmediated apoptosis. Mol Med Rep. 2021;23(4):266. https://doi.org/10.3892/mmr.2021.11905

60. Bon’ EI. Characteristics of mediators and modulators, their biological role in the functioning of the nervous system. Vestnik NovGU . 2021;1(122):6–14. (In Russ.).

61. Spiering MJ. The discovery of GA BA in the brain. J Biol Chem. 2018;293(49):19159–19160. https://doi.org/10.1074/jbc.CL118.006591

62. Ganguly K, Schinder AF, Wong ST, Poo M. GA BA itself promotes the developmental switch of neuronal GA BAergic responses from excitation to inhibition. Cell. 2001;105(4):521–532. https://doi.org/10.1016/s0092–8674(01)00341‑5

63. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GA BA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87(4):1215–1284. https://doi.org/10.1152/physrev.00017.2006

64. Yu X , Li W, Ma Y et al. GA BA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22(1):106–119. https://doi.org/10.1038/s41593‑018‑0288‑9

65. Chen CR, Zhong YH, Jiang S et al. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife. 2021;10:e69909. https://doi.org/10.7554/eLife.69909

66. Wang Z, Zhong YH, Jiang S, Qu WM , Huang ZL, Chen CR. Case Report: Dysfunction of the Paraventricular Hypothalamic Nucleus Area Induces Hypersomnia in Patients. Front Neurosci. 2022;16:830474. https://doi.org/10.3389/fnins.2022.830474

67. Rönnbäck L, Johansson B. Long-Lasting Pathological Mental Fatigue After Brain Injury-A Dysfunction in Glutamate Neurotransmission? Front Behav Neurosci. 2022;15:791984. https://doi.org/10.3389/fnbeh.2021.791984

68. Kim J, Guo L, Hishinuma A et al. Recovery of consolidation after sleep following stroke-interaction of slow waves, spindles, and GA BA. Cell Rep. 2022;38(9):110426. https://doi.org/10.1016/j.celrep.2022.110426

69. He WM , Ying-Fu L, Wang H, Peng YP . Delayed treatment of α5 GA BAA receptor inverse agonist improves functional recovery by enhancing neurogenesis after cerebral ischemia-reperfusion injury in rat MCAO model. Sci Rep. 2019;9(1):2287. https://doi.org/10.1038/s41598‑019‑38750‑0

70. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307. https://doi.org/10.1007/3–540–05462–6_2

71. Chen J, Cheuk IWY , Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol. 2019;31:46–53. https://doi.org/10.1016/j.suronc.2019.09.003

72. Brown RE , Basheer R, McKenna JT, Strecker RE , McCarley RW . Control of sleep and wakefulness. Physiol Rev. 2012;92(3):1087–1187. https://doi.org/10.1152/physrev.00032.2011

73. Oz O, Matityahu L, Mizrahi-Kliger A et al. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. Elife. 2022;11:e76039. https://doi.org/10.7554/eLife.76039

74. Nishino S, Mignot E. P harmacological aspects of human and canine narcolepsy. Prog Neurobiol. 1997;52(1):27–78. https://doi.org/10.1016/s0301–0082(96)00070‑6

75. Xu M, Chung S, Zhang S et al. Basal forebrain circuit for sleepwake control. Nat Neurosci. 2015;18(11):1641–1647. https://doi.org/10.1038/nn.4143

76. Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep. 2014;37(12):1941–1951. https://doi.org/10.5665/sleep.4246

77. Anaclet C, Pedersen NP, Ferrari LL et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015;6:8744. https://doi.org/10.1038/ncomms9744

78. Pak VM, Dai F, Keenan BT, Gooneratne NS, Pack AI. Lower plasma choline levels are associated with sleepiness symptoms. Sleep Med. 2018;44:89–96. https://doi.org/10.1016/j.sleep.2017.10.004

79. Jones BE, Bobillier P, Pin C, Jouvet M. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res. 1973;58(1):157–177. https://doi.org/10.1016/0006–8993(73)90830‑5

80. Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HIL. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer’s disease. Sleep Med Rev. 2022;62:101592. https://doi.org/10.1016/j.smrv.2022.101592

81. Jones BE. Arousal and sleep circuits. Neuropsychopharmacology. 2020;45(1):6–20. https://doi.org/10.1038/s41386‑019‑0444‑2

82. Knie B, Mitra MT, Logishetty K, Chaudhuri KR. Excessive daytime sleepiness in patients with Parkinson’s disease. CNS Drugs. 2011;25(3):203–212. https://doi.org/10.2165/11539720‑000000000‑00000

83. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006;26(1):193–202. https://doi.org/10.1523/JNEUROSCI.2244–05.2006

84. Grady FS, Boes AD , Geerling JC. A Century Searching for the Neurons Necessary for Wakefulness. Front Neurosci. 2022;16:930514. https://doi.org/10.3389/fnins.2022.930514

85. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L . VTA dopaminergic neurons regulate ethologically relevant sleepwake behaviors. Nat Neurosci. 2016;19(10):1356–1366. https://doi.org/10.1038/nn.4377

86. McGinty DJ, Harper RM . Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 1976;101(3):569–575. https://doi.org/10.1016/0006–8993(76)90480‑7

87. Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev. 2021;128:282–293. https://doi.org/10.1016/j.neubiorev.2021.06.022

88. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31(3):187–199. https://doi.org/10.1111/j.1365–2885.2008.00944.x

89. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–366. https://doi.org/10.1146/annurev.med.60.042307.110802

90. Wisor J. M odafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Front Neurol. 2013;4:139. https://doi.org/10.3389/fneur.2013.00139

91. Wilson H, Giordano B, Turkheimer FE, Chaudhuri KR, Politis M . Serotonergic dysregulation is linked to sleep problems in Parkinson’s disease. Neuroimage Clin. 2018;18:630–637. https://doi.org/10.1016/j.nicl.2018.03.001

92. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci. 2002;22(17):7695–7711. https://doi.org/10.1523/JNEU-ROSCI.22–17–07695.2002

93. Atkin T, Comai S, Gobbi G. D rugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol Rev. 2018;70(2):197–245. https://doi.org/10.1124/pr.117.014381


Review

For citations:


Ternovykh I.K., Topuzova M.P., Portik O.A., Shustova T.A., Dudnikova N.E., Alekseeva T.M. Sleep and wake mediators as laboratory biomarkers of post-stroke hypersomnolence (literature review). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(4):133-143. (In Russ.) https://doi.org/10.56618/20712693_2022_14_4_133

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)