Modern approaches to predicting the course and outcomes of treatment of the most common malignant brain tumors in children (literature review)
https://doi.org/10.56618/20712693_2022_14_4_122
Abstract
The analysis of literature data on the factors of prognosis of the course and effectiveness of treatment of the most common malignant brain tumors in children — medulloblastoma, glioma of high malignancy, ependyma.
It is noted that the new data obtained in recent years on the molecular pathogenesis of the main groups of malignant brain tumors have served as the basis for the development of risk stratification systems, the search for prognostic factors and the improvement of methods of treatment of cerebral tumors in children. Examples of scales are presented that allow identifying candidates for surgical intervention in patients with recurrent cerebral tumors with an assessment of further prognosis and the possibility of developing personalized tactics for postoperative treatment.
It is indicated that the integration of clinical and biological data to provide a differentiated approach to the treatment of pediatric cerebral tumors, adapted to risk levels, can potentially change the intensity of traditional therapy and make it possible to introduce new methods of treatment of these tumors into clinical practice.
OBJECTIVE: to present an analysis of the literature data on the prognostic factors of the course and effectiveness of treatment of the most common malignant brain tumors in children — medulloblastoma, glioma of high malignancy, ependym.
In order to obtain complete and up-to-date information, search queries were performed in various relevant databases: MEDLINE, Cochrane Controlled Trials Register, International Pharmaceutical Abstracts, Pub Med Central, Cyberleninka.
About the Authors
E. T. NazaralievaRussian Federation
Eleonora T. Nazaralieva.
Mayakovsky str., 12, St. Petersburg, 191014
A. P. Gerasimov
Russian Federation
Alexander P. Gerasimov.
Mayakovsky str., 12, St. Petersburg, 191014
E. T. Nazaralieva
Kyrgyzstan
Elnura T. Nazaralieva.
Bishkek
Yu. M. Zabrodskaya
Russian Federation
Yulia M. Zabrodskaya.
Mayakovsky str., 12, St. Petersburg, 191014
M. A. Shevtsov
Russian Federation
Maxim A. Shevtsov.
St. Petersburg, 197341
K. A. Samochernykh
Russian Federation
Konstantin A. Samochernykh.
Mayakovsky str., 12, St. Petersburg, 191014
References
1. Ostrom Q.T., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRU S Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. NeuroOncol. 2021; 23: 1–10. https://doi.org/10.1093/neuonc/noab200.
2. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W . K. et al. The 2016 W orld Health Organization Classification of Tumors of the Central Nervous System: A summary. ActaNeuropathol. 2016; 131: 803–820. https://doi.org/10.1007/s00401‑016‑1545‑1
3. Khanna V, Achey R . L ., Ostrom Q . T., Block-Beach H., Kruchko C., Barnholtz-Sloan J.S., de Blank P . M . Incidence and survival trends for medulloblastomas in the United States from 2001 to 2013. J. Neurooncol. 2017; 135: 433–441. https://doi.org/10.1007/s11060‑017‑2594‑6.
4. Orr B. A . Pathology, diagnostics, and classification of medulloblastoma. BrainPathol. 2020; 30: 664–678. https://doi.org/10.1111/bpa.12837.
5. Hossain MJ, Xiao W, Tayeb M, Khan S. Epidemiology and prognostic factors of pediatric brain tumor survival in the US: Evidence from four decades of population data. CancerEpidemiol. 2021;72:101942. https://doi.org/10.1016/j.canep.2021.101942.
6. Ramaswamy V., Remke M., Bouffet E., Bailey S., Clifford S. C., Doz F. et al. Risk stratification of childhood medulloblastoma in the molecular era: The current consensus. ActaNeuropathol. 2016; 131: 821–831. https://doi.org/10.1007/s00401‑016‑1569‑6.
7. Cotter JA, Hawkins C. Medulloblastoma: WHO 2021 and Beyond. PediatrDevPathol. 2022; 25 (1): 23–33. https://doi.org/10.1177/10935266211018931.
8. Siegel DA , Li J, Ding H, Singh SD, King JB, Pollack LA . Racial and ethnic differences in survival of pediatric patients with brain and central nervous system cancer in the United States. Pediatric Blood & Cancer. 2019; 66 (2): 27501. https://doi.org/10.1002/pbc.27501.
9. Hachatryan V. A ., Ulitin AYU ., Samochernyh K. A . idr. Medulloblastoma (literature review). Part 1. Epidemiology. Pathoformology. Diagnostics. Nejrohirurgiya i nevrologiya detskogo vozrasta. 2013; 4(38): 59–70. (In Russ.).
10. Cavalli F.M.G., Remke M., Rampasek L., Peacock J., Shih D . J.H., Luu B. et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017; 31: 737–754. https://doi.org/10.1016/j.ccell.2017.05.005.
11. Nazaralieva E . T., Gerasimov A . P ., ZabrodskayaYU .M., IvanovaN.E,. SHevcov M.A., Hachatryan V. A . Some genetic markers of low-grade cerebral gliomas in children and their potential importance in the development of therapy. Rossijskij nejrohirurgicheskij zhurnal im. prof. A. L . Polenova. 2021; XIII (4): 103–110 (In Russ.).
12. Raybaud C., Ramaswamy V., Taylor M . D ., Laughlin, S. Posterior fossa tumors in children: Developmental anatomy and diagnostic imaging. ChildsNerv. Syst. 2015; 31: 1661–1676. https://doi.org/10.1007/s00381–015–2834-z.
13. Lafay-Cousin L., Smith A., Chi S. N., Wells E., Madden J., Margol A . et al. Clinical, Pathological, and Molecular Characterization of Infant Medulloblastomas Treated with Sequential High-Dose Chemotherapy. Pediatr. Blood Cancer. 2016; 63: 1527–1534. https://doi.org/10.1002/pbc.26042.
14. Northcott P.A., Buchhalter I., Morrissy A . S., Hovestadt V., Weischenfeldt J., Ehrenberger T. et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017; 547: 311–317. https://doi.org/10.1038/nature22973.
15. Maier H., Dalianis T., Kostopoulou O . N. New Approaches in Targeted Therapy for Medulloblastoma in Children. Anticancer.Res. 2021; 41: 1715–1726. https://doi.org/10.21873/anticanres.14936.
16. Ramaswamy V., Remke M., Shih D., Wang X ., Northcott P . A ., Faria C. C. et al. Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent. Pediatr. BloodCancer. 2014; 61: 1190–1194.https://doi.org/10.1002/pbc.25002.
17. Szalontay L., Khakoo Y. M edulloblastoma: An Old Diagnosis with New Promises. Curr. Oncol. Rep. 2020; 22: 90. https://doi.org/10.1007/s11912‑020‑00953‑4.
18. Robinson G.W., Rudneva V. A ., Buchhalter I., Billups C. A ., Waszak S. M ., Smith K. S. et al. Risk-adapted therapy for young children with medulloblastoma (SJYC 07): Therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018; 19: 768–784. https://doi.org/10.1016/S1470–2045(18)30204‑3.
19. Lafay-Cousin L., Bouffet E., Strother D., Rudneva V., Hawkins C., Eberhart C. et al. Phase II Study of Nonmetastatic Desmoplastic Medulloblastoma in Children Younger Than 4 Years of Age: A Report of the Children’s Oncology Group (ACNS 1221). J. Clin. Oncol. 2020; 38: 223–231. https://doi.org/10.1200/JCO.19.00845.
20. Kool M., Jones D . T., Jager N., Northcott P . A ., Pugh T. J., Hovestadt V. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014; 25: 393–405. https://doi.org/10.1016/j.ccr.2014.02.004.
21. Shih D.J., Northcott P . A ., Remke M., Korshunov A., Ramaswamy V., Kool M. et al. Cytogenetic prognostication within medulloblastomasubgroups. J. Clin. Oncol. 2014; 32: 886–896. https://doi.org/10.1200/JCO.2013.50.9539.
22. Diaz A.K., Baker S. J. The genetic signatures of pediatric high-grade glioma: No longer a one-act play. Semin. Radiat. Oncol. 2014; 24: 240–247.https://doi.org/10.1016/j.semradonc.2014.06.003.
23. Mackay A., Burford A., Carvalho D., Izquierdo E., Fazal-Salom J., Taylor K. R . et al. Integrated Molecular Meta-Analysis of 1000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell. 2017; 32: 520–537. https://doi.org/10.1016/j.ccell.2017.08.017.
24. Castel D., Philippe C., Calmon R., Le Dret L., Truffaux N., Boddaert N. et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontinegliomas with different prognosis and phenotypes. ActaNeuropathol. 2015; 130: 815–827. https://doi.org/10.1007/s00401‑015‑1478‑0.
25. Korshunov A., Ryzhova M., Hovestadt V., Bender S., Sturm D., Capper D. et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. ActaNeuropathol. 2015; 129: 669–678. https://doi.org/10.1007/s00401‑015‑1405‑4.
26. Pollack I.F., Boyett J. M ., Yates A . J., Burger P . C., Gilles F. H., Davis R . L . et al. Children’s Cancer, G. The influence of central review on outcome associations in childhood malignant gliomas: Results from the CCG‑945 experience. NeuroOncol.2003; 5: 197–207. https://doi.org/10.1215/S1152851703000097.
27. Cohen K.J., Heideman R . L ., Zhou T., Holmes E . J., Lavey R . S., Bouffet E. et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontinegliomas: A report from the Children’s Oncology Group. NeuroOncol. 2011; 13: 410–416. https://doi.org/10.1093/neuonc/noq205
28. Amirian E.S., Armstrong T. S., Aldape K. D . et al. Predictors of survival among pediatric and adult ependymoma cases: A study using Surveillance, Epidemiology, and End Results data from 1973 to 2007. Neuroepidemiology. 2012; 39: 116–124.https://doi.org/10.1159/000339320
29. Benesch M., Mynarek M., Witt H., Warmuth-Metz M., Pietsch T., Bison B., et al. Newly Diagnosed Metastatic Intracranial Ependymoma in Children: Frequency, Molecular Characteristics, Treatment, an Outcome in the Prospective HIT Series. Oncologist 2019; 24: 921–929. https://doi.org/10.1634/theoncologist.2018–0489.
30. Pajtler K.W., Mack S. C., Ramaswamy V., Smith C. A ., Witt H., Smith A. et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. ActaNeuropathol. 2017; 133; 5–12. https://doi.org/10.1007/s00401‑016‑1643‑0.
31. Bandopadhayay P., Silvera V. M ., Ciarlini P., Malkin H., Bi W . L ., Bergthold G. et al. Myxopapillaryependymomas in children: Imaging, treatment and outcomes. J. Neurooncol. 2016; 126: 165–174. https://doi.org/10.1007/s11060‑015‑1955‑2.
32. Ellison D.W., Aldape K. D ., Capper D., Fouladi M., Gilbert M . R ., Gilbertson R . J. et al. cIMPA CT-NOW update 7: Advancing the molecular classification of ependymal tumors. BrainPathol. 2020; 30: 863–866. https://doi.org/10.1111/bpa.12866.
33. Mack S.C., Witt H., Piro R . M ., Gu L ., Zuyderduyn S., Stutz A . M . et al. Epigenomic alterations define lethal CIMP -positive ependymomas of infancy. Nature. 2014; 506: 445–450. https://doi.org/10.1038/nature13108.
34. Michealraj K.A., Kumar S. A ., Kim L . J.Y., Cavalli F. M .G., Przelicki D . et al. Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell. 2020; 181: 1329–1345. https://doi.org/10.1016/j.cell.2020.04.047.
35. Zapotocky M., Beera K., Adamski J., Laperierre N., Guger S., Janzen L . et al. Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer. 2019; 125: 1867–1876. https://doi.org/10.1002/cncr.31995.
36. Ramaswamy V., Taylor M . D . Treatment implications of posterior fossa ependymoma subgroups. Chin. J. Cancer. 2016; 35: 93. https://doi.org/10.1186/s40880‑016‑0155‑6.
37. Pajtler K.W., Witt H., Sill M., Jones D . T., Hovestadt V., Kratochwil F. et al. Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. CancerCell. 2015; 27: 728–743. https://doi.org/10.1016/j.ccell.2015.04.002.
38. Cavalli F.M.G., Hubner J. M ., Sharma T., Luu B., Sill M., Zapotocky M . et al. Heterogeneity within the PF-EP N-B ependymoma subgroup. ActaNeuropathol. 2018; 136; 227–237. https://doi.org/10.1007/s00401–018–1888-x.
39. Arabzade A., Zhao Y., Varadharajan S., Chen H. C., Jessa S., Rivas B. et al. ZFTA-RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive SupratentorialEpendymoma. Cancer Discov. 2021; 11: 2200–2215. https://doi.org/10.1158/2159–8290.CD‑20–1066.
40. Nowak J., Junger S. T., Huflage H., Seidel C., Hohm A., Vandergrift L . A . et al. MR I Phenotype of RELA -fused Pediatric SupratentorialEpendymoma. Clin. Neuroradiol. 2019; 29: 595–604. https://doi.org/10.1007/s00062‑018‑0704‑2.
41. Merchant T.E., Bendel A . E ., Sabin N. D ., Burger P . C., Shaw D . W ., Chang E. et al. Conformal Radiation Therapy for Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma, and Observation for Completely Resected, SupratentorialEpendymoma. J. Clin. Oncol. 2019; 37: 974–983. https://doi.org/10.1200/JCO.18.01765.
42. Merchant T.E., Li C., Xiong X ., Kun L . E ., Boop F. A ., Sanford R . A . Conformal radiotherapy after surgery for paediatricependymoma: A prospective study. LancetOncol. 2009; 10: 258–266. https://doi.org/10.1016/s1470–2045(08)70342‑5.
43. Ramaswamy V., Hielscher T., Mack S. C., Lassaletta A., Lin T., Pajtler K. W . et al. Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. J. Clin. Oncol. 2016; 34: 2468–2477. https://doi.org/10.1200/JCO.2015.65.7825.
44. Plotkin S.R., O’Donnell C.C., Curry W . T., Bove C. M ., MacCollin M ., Nunes F. P . Spinal ependymomas in neurofibromatosis Type 2: A retrospective analysis of 55 patients. J. Neurosurg. Spine. 2011; 14: 543–547.https://doi.org/10.3171/2010.11.SPINE10350.
45. Kukanov K. K., Zrelov A . A ., Samochernykh K. A ., Olyushin V. E ., Potemkina E . G ., UlitinA.Yu. Comparative analysis of stereotaxic and endoscopic methods of biopsy of brain tumors (literature review). Rossiiskii neirokhirurgicheskii zhurnal im. professora A. L . Polenova. 2020;12(1):64–70. eLIBRARY ID: 42874078 EDN: WNRSOX (In Russ.).
46. Kim A . V., Hachatryan V. A . Results of intraoperative fluorescent diagnostics using 5-aminolevulinic acid in the surgical treatment of children with recurrent neuroepithelial tumors. Voprosy nejrohirurgii im. N. N. Burdenko. 2017; 81 (1): 51–57 (In Russ.)
47. Hankinson TC, Dudley RW , Torok MR , Patibandla MR , Dorris K, Poonia S, et al. Short-term mortality following surgical procedures for the diagnosis of pediatric brain tumors: outcome analysis in 5533 children from SEER , 2004–2011. Journal of Neurosurgery: Pediatrics. 17 (3): 289–297.https://doi.org/10.3171/2015.7.PEDS15224.
48. Samaan MC, Akhtar-Danesh N. The impact of age and race on longevity in pediatric astrocytic tumors: A population-based study. Pediatric Blood & Cancer. 2015; 62 (9): 1567–1571.https://doi.org/10.1002/pbc.25522.
49. Karalexi MA , Papathoma P, Thomopoulos TP, Ryzhov A, Zborovskaya A , Dimitrova N, et al. Childhood central nervous system tumour mortality and survival in Southern and Eastern Europe (1983–2014): gaps persist across 14 cancer registries. Eur. J. Canc. 2015; 51 (17): 2665–2677. https://doi.org/10.1016/j.ejca.2015.08.018.
50. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRU S statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neurooncology. 2018; 20 (4): 1–86. https://doi.org/10.1093/neuonc/noy131.
51. O ’Kane R, Mathew R, Kenny T, Stiller C, Chumas P. United Kingdom 30-day mortality rates after surgery for pediatric central nervous system tumors. Journal of Neurosurgery: Pediatrics. 2013; 12 (3): 227–234. https://doi.org/10.3171/2013.5.PEDS12514.
52. Park CK, Kim JH, Nam DH, Kim CY, Chung SB, Kim YH, et al. A practical scoring system to determine whether to proceed with surgical resection in recurrent glioblastoma. NeuroOncol. 2013;15(8):1096–1101.https://doi.org/10.1093/neuonc/not069.
53. Park JK, Hodges T, Arko L, Shen M, DelloIacono D, McNabb A et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J ClinOncol. 2010; 28: 3838–3843. https://doi.org/10.1200/JCO.2010.30.0582.
54. Kim A . V., Fedorov E . V., SHevcov M .A. i dr. Some features of recurrence of neuroepithelial brain tumors in children. Rossijskij nejrohirurgicheskij zhurnal im. prof. A. L . Polenova. 2020; 12 (2): 9–16. (In Russ.).
55. Xu T, Chen J, Lu Y . Recurrent glioblastoma: not only surgery. J ClinOncol. 2011; 29: 102–103. https://doi.org/10.1200/JCO.2010.32.5548.
56. Komotar RJ, Starke RM , Connolly ES, Sisti MB. Evaluating the benefit of repeat surgery for recurrent glioblastoma multiforme. Neurosurgery. 2010;67:16–17.https://doi.org/10.1227/01.neu.0000390612.35337.9f.
57. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D , et al. The 2021 W HO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 2021; 23(8): 1231–1251. https://doi.org/10.1093/neuonc/noab106.
Review
For citations:
Nazaralieva E.T., Gerasimov A.P., Nazaralieva E.T., Zabrodskaya Yu.M., Shevtsov M.A., Samochernykh K.A. Modern approaches to predicting the course and outcomes of treatment of the most common malignant brain tumors in children (literature review). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(4):122-132. (In Russ.) https://doi.org/10.56618/20712693_2022_14_4_122