Mathematical calculations for modeling the damaged vertebral body with adjacent discs and the sagittal angle in the thoracic and lumbar regions
https://doi.org/10.56618/20712693_2022_14_4_98
Abstract
INTRODUCTION: Based on the CT examination of the thoracic and lumbar spine, morphometry and mathematical calculations of the spinal segment of three adjacent vertebrae and intervertebral discs were performed in 25 patients of different sex and age to simulate the recovery of the damaged vertebral body and adjacent discs. Measurements were made using computer software in the RadiAnt viewer on the mid-sagittal section.
MATERIALS AND METHODS: The results of spiral computed tomography (SCT) of 25 patients (12 women and 13 men aged 18 to 60 years) who were treated in the neurosurgical department were taken for the study.
RESULTS: According to the results of statistical processing with a 95 % confidence interval, the following calculation error was obtained: when modeling the anterior and posterior dimensions of the damaged vertebral body — 0.7±0.2 mm; anterior and posterior dimensions of the damaged disc — 0.8±0.2 mm and 0.65±0.2 mm, respectively; anterior and posterior dimensions of the vertebral body and upper disc — 1.1±0.4 mm and 1.2±0.5 mm; anterior and posterior dimensions of the vertebral body with adjacent discs — 1.4 ± 0.4 mm and 1.3 ± 0.5 mm. When modeling the angle α: with violation of the anterior and posterior dimensions of the vertebral body and upper disc, the error in the calculations is 2.7±0.8 degrees; with violation of the anterior and posterior dimensions of the vertebral body and adjacent discs — 2.5±0.6 degrees.
DISCUSSION OF THE RESULTS: The obtained calculations can be used when planning a surgical intervention to restore the damaged spinal motion segment in the thoracic and lumbar regions and modeling to the original undamaged state.
About the Authors
V. D. UsikovRussian Federation
Vladimir D. Usikov.
196247, Saint Petersburg
V. S. Kuftov
Russian Federation
Vladimir S. Kuftov.
196247, Saint Petersburg
D. N. Monashenko
Russian Federation
Dmitrii N. Monashenko.
196247, Saint Petersburg
A. A. Dolgushin
Russian Federation
Artem A. Dolgushin.
196247, Saint Petersburg
References
1. Axenova O . A ., Chaplyigina E . V., Babaeva M . V., Orlova S. V., Sikorenko T. M ., Samohina O . S. Opportunities and prospects of radiation diagnostic methods in the study of the anatomy of the spinal column. Journal of Anatomy and Histopathology. Journal of Anatomy and Histopathology. 2017;6(3):111–116.(In Russ.). https://doi.org/10.18499/2225‑7357‑2017‑6‑3‑111‑116
2. Anisimov D . A . Correlations of the size of the spinal column, its divisions and individual vertebrae in adults. News of higher educational institutions Volga region. Medical Sciences.2013; 1: 5–10.(In Russ.).
3. Anisimova E . A ., Nikolenko V. N., Ostrovski V. V., Toma A . I. M orphometric substantiation of the choice of the method of surgical correction of injuries of the thoracic spine // Saratov Journal of Medical Scientific Research.— 2009. — V.5. — No. 2. — p. 254–260.(In Russ.).
4. Bublik L . A ., Liholetov A . N. Experimental biomechanical substantiation of transpedicular fusion with vertebroplasty based on the study of a finite element model of a spinal column fragment. Injury. 2014; 15(1):66–73(In Russ.).
5. Volkov A . A ., Beloselski N. N., Pribyitkov Yu.N. X-ray morphometry of the intervertebral spaces of the spinal column in the norm and with degenerative changes in the intervertebral discs. Bulletin of radiology and radiology. 2015;(3):23–30. https://doi.org/10.20862/0042‑4676‑2015‑0‑3‑23‑30.
6. Davidov E . A ., Nazarov A . S., Tyulkin O . N. The use of an interspinous distractor made of nitinol in the surgical treatment of segmental instability in the lumbar spine.— 2015. — T. 12. — No. 1. — S. 76–82. — DOI 10.14531/ss2015.1.69–75. — EDN TODHNX.
7. Breglia DP . Generation of a 3-D Parametric solid model of the human spine using anthropomorphic parameters. Master thesis,. 2006, Ohio University, OH.
8. Fletcher, J. G. R., Stringer, M. D., Briggs, C. A., Davies, T. M., & Woodley, S. J. (2015). CT morphometry of adult thoracic intervertebral discs. European Spine Journal, 24(10), 2321–2329. doi:10.1007/s00586–015–3925-y.
9. Chou SH, Vokes T. Vertebral Morphometry. J Clin Densitom. 2016 Jan-Mar;19(1):48–53. doi: 10.1016/j.jocd.2015.08.005.
10. Kunk el ME , Schmidt H, Wilke H-J. 2010 Prediction equations for human thoracic and lumbar vertebral morphometry. J. A nat. 216, 320–328. doi:10.1111/j.1469–7580.2009.01187.x
11. Narloch J, Glinkowski W. Software-assisted morphometry and volumetry of the lumbar spine. Neurol Neurochir Pol (2016), http://dx.doi.org/10.1016/j.pjnns.2016.01.010
12. Turner JD, Akbarnia BA, Eastlack RK, Bagheri R, Nguyen S, Pimenta L , Marco R, Deviren V, Uribe J, Mundis GM Jr. Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J. 2015 Apr;24 Suppl 3:427–32. doi: 10.1007/s00586‑015‑3842‑0.
Review
For citations:
Usikov V.D., Kuftov V.S., Monashenko D.N., Dolgushin A.A. Mathematical calculations for modeling the damaged vertebral body with adjacent discs and the sagittal angle in the thoracic and lumbar regions. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(4):98-110. (In Russ.) https://doi.org/10.56618/20712693_2022_14_4_98