Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Modeling the volume of tissue activated using directional deep brain stimulation

https://doi.org/10.56618/2071-2693_2023_15_1_52

Abstract

SUMMARY. The use of segmented electrodes in deep brain stimulation (DBS) systems in stereotaxis has proven to be effective against undesirable side effects by changing the stimulation vector. Appearance of modern algorithms for calculating the volume of tissue activated (VTA) around the active contact of the electrode allowed better understanding how stimulation affects the activity of target brain structures. We evaluated the results of VTA modeling using segmented electrodes for deep stimulation implanted in the Globus Pallidum and the Subthalamic nucleus. Activation of the DBS system in the directional stimulation mode at the same amplitude values allowed using more structures in the direction of stimulation than in the non-directional mode, while reducing the involvement of structures around inactive contacts. With a suboptimal position of the electrode, it is possible to achieve the involvement of the required stereotactic target by the activation volume only with a significant increase in amplitude; operation in the directed stimulation mode can improve the results, but the accuracy of electrode implantation still plays a key role in the effectiveness of the operation.

About the Authors

V. A. Peskov
N.P. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences
Russian Federation

Peskov Viktor Alexandrovich

9, Akademika Pavlova st., Saint Petersburg, 197376



A. I. Kholyavin
N.P. Bekhtereva Institute of Human Brain of the Russian Academy of Sciences
Russian Federation

Kholyavin Andrey Ivanovich

9, Akademika Pavlova st., Saint Petersburg, 197376



References

1. Gamaleya A. A., Tomskii A. A., Bril' E.V., Shabalov V. A. Elektrostimulyatsiya glubokikh struktur golovnogo mozga pri ekstrapiramidnykh zabolevaniyakh. Printsipy programmirovaniya. Nervnye bolezni. 2012;4: 55–62. (in Russ)

2. Nezdorovina V.G., Nezdorovin O. V., Alexandrov M. V., Andreeva E.S., Oleynik E. A. DBS pri extrapiramidnykh zabolevaniyakh. Pervyj opyt raboty. Rossiyskiy neirokhirurgicheskiy zhurnal im. professora A. L. Polenova. 2016;8(S): 226 (in Russ)

3. Dembek T.A., Baldermann J.C., Petry-Schmelzer J.N., Jergas H., Treuer H., Visser-Vandewalle V., Dafsari H.S., Barbe M.T. Sweetspot Mapping in Deep Brain Stimulation: Strengths and Limitations of Current Approaches. Neuromodulation. 2021;25(6):877–887. https://doi.org/10.1111/ner.13356

4. Okun M., Tagliati M., Pourfar M., Fernandez H., Rodriguez L., Alterman L., Foote K. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005; 62(8):1250–5. https://doi.org/10.1001/archneur.62.8.noc40425

5. Schüpbach W.M.M., Chabardes S., Matthies C., Pollo C., Steigerwald F., Timmermann L., Visser Vandewalle V., Volkmann J., Schuurman P.R, Directional Leads for Deep Brain Stimulation: Opportunities and Challenges: Directional Leads For DBS. Mov Disord. 2017;32 (10):1371–1375. https://doi.org/10.1002/mds.27096.

6. Pollo C., Kaelin-Lang A., Oertel M.F., Stieglitz L., Taub E., Fuhr P., Lozano A. M., Raabe A., Schüpbach M. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(7):2015–2026. https://doi.org/10.1093/brain/awu102.

7. [Kholyavin A.I., Peskov V. A., Sterlikova N. V., Oblyapin A. V., Mozhaev S. V. Opyt primeneniya napravlennoy glubinnoy stimulyatsii mozga pri khirurgicheskom lechenii patsientov s extrapiramidnoy patologiey. Rossiyskiy neirokhirurgicheskiy zhurnal im. professora A. L. Polenova. 2021;13(S1):187 (in Russ)

8. Horn A., Li N., Dembek T. A., Kappel A., Boulay C., Ewert S., Tietze A., Husch A., Perera T., Neumann W. J., Reisert M., Si H., Oostenveld R., Rorden C., Yeh F.C., Fang Q., Herrington T. M., Vorwerk J., Kühn A. A. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019; 1;184:293–316. https://doi.org/10.1016/j.neuroimage.2018.08.068

9. Avants B., Tustison N., Song G., Cook P. A., Klein A., Gee J.C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage. 2011; 1;54(3):2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025

10. Husch A.V., Petersen M., Gemmar P., Goncalves J., Hertel F. PaCER — A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin. 2017;17:80–89. https://doi.org/10.1016/j.nicl.2017.10.004

11. Vorwerk J., Oostenveld R., Piastra M.C., Magyari L., Wolters C.H. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online. 2018;17(1):37. https://doi.org/10.1186/s12938–018–0463-y


Review

For citations:


Peskov V.A., Kholyavin A.I. Modeling the volume of tissue activated using directional deep brain stimulation. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(1):52-55. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_1_52

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)