Theoretical foundations of the use of impedance spectroscopy in medicine
https://doi.org/10.56618/2071-2693_2023_15_4_35
EDN: CEBXSC
Abstract
The article presents theoretical provisions on the use of impedance spectroscopy in medicine. Electromagnetic processes occurring in the body tissue at the cellular level are considered.
PURPOSE OF THE STUDY: Determination of how elements of the geometry of tissue structure at the cellular level and elements of electromagnetic parameters determine the frequency dependence of the impedance on that tissue.
About the Authors
V. D. GoncharovRussian Federation
Vadim D. Goncharov.
5, Professora Popova st., Saint Petersburg, 197022
K. A. Samochernykh
Russian Federation
Konstantin A. Samochernykh.
12, Mayakovskogo st., Saint Petersburg, 191014
N. E. Voinov
Russian Federation
Nikita E. Voinov.
12, Mayakovskogo st., Saint Petersburg, 191014
K. K. Kukanov
Russian Federation
Konstantin K. Kukanov.
12, Mayakovskogo st., Saint Petersburg, 191014
A. E. Gerasimenko
Russian Federation
Aleksandra E. Gerasimenko.
5, Professora Popova st., Saint Petersburg, 197022
R. V. Yashkardin
Russian Federation
Rostislav V. Yashkardin.
5, Professora Popova st., Saint Petersburg, 197022
M. A. Gorelikova
Russian Federation
Mariya A. Gorelikova.
5, Professora Popova st., Saint Petersburg, 197022
References
1. Svoboda, R. M., Prado, G., Mirsky, R. S., & Rigel D. S. Assessment of clinician accuracy for diagnosing melanoma on the basis of electrical impedance spectroscopy score plus morphology versus lesion morphology alone. Journal of the American Academy of dermatology, 2019, 80(1):285–287. https://doi.org/10.1016/j.jaad.2018.08.048
2. Pedro BG, Marcôndes Dwc, Bertemes-Filho P. Analytical Model for Blood Glucose detection using Electrical Impedance Spectroscopy. Sensors. 2020; 20(23):6928. https://doi.org/10.3390/s20236928
3. Crowell LL, Yakisich JS, Aufderheide B, Adams TNG. Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines. 2020; 11(9):832. https://doi.org/10.3390/mi11090832
4. Khan S, Mahara A, Hyams ES, Schned AR, Halter RJ. prostate cancer detection using composite impedance metric. IEEE Transact Med Imaging. 2016, 35:2513–23. https://doi.org/10.1109/TMI.2016.2578939
5. Desai S. P., Coston A., Berlin A. Micro-Electrical Impedance Spectroscopy and Identification of patient-derived, dissociated Tumor Cells. IEEE Transactions on NanoBioscience. 2019; 18.3:369–372. https://doi.org/10.1109/TNB.2019.2920743.
6. Osnovy teoreticheskoi elektrotekhniki: uchebnoe posobie. Bychkov Yu. A., Zolotnitskii V. M., Solov'eva E. B., Chernyshev E. P., Belyanin A. I. SPb: Izdatel'stvo Lan'; 2021. (In Russ.)
7. Vendik I. B., Vendik O. G., Kozlov D. S., Munina I. V., Pleskachev V. V., Rusakov A. S., Tural’chuk P.A. Besprovodnoi monitoring parametrov sostoyaniya biologicheskikh ob”ektov v mikrovolnovom diapazone (Obzor). Zhurnal tekhnicheskoi fiziki. 2016, 86(1):3–26 (In Russ.) EDN: VPSQQN
8. Teoreticheskaya elektrotekhnika. Shimoni K. pod red. K. M. Polivanova. Moskva: Izdatel’stvo Mir; 1964
9. Tikhomirov A. M. Impedans biologicheskikh tkanei i ego primenenie v meditsine. M.: RGMU; 2006, 10.4:34 (In Russ.)
10. Stinstra JG., Hopenfeld B., MacLeod RS. On the passive Cardiac Conductivity. Ann Biomed Eng. 2005, 33:1743–1751 https://doi.org/10.1007/s10439-005-7257-7
11. Carvallo A, Modolo J, Benquet P, Lagarde S, Bartolomei F, Wendling F. Biophysical modeling for brain tissue conductivity estimation using SEEG electrodes. IEEE Transact Biomed Eng. 2019, 66:1695–704. https://doi.org/10.1109/TBME.2018.2877931
Review
For citations:
Goncharov V.D., Samochernykh K.A., Voinov N.E., Kukanov K.K., Gerasimenko A.E., Yashkardin R.V., Gorelikova M.A. Theoretical foundations of the use of impedance spectroscopy in medicine. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(4):35-41. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_4_35. EDN: CEBXSC