A possibilities of intraoperative nerve fluorescent biovisualization in neurosurgical practice
https://doi.org/10.56618/2071-2693_2023_15_1_68
Abstract
ABSTRACT. One of the main purpose of various surgical operations is to preserve the nerves, since unintentional damage can lead to neurological deficits in the patient, including numbness, pain, local paralysis, and others. Nerve identification during surgery depends on a variety of parameters, including anatomy, texture, color, and relationship to surrounding structures using white light illumination. The use of fluorescent labeling of nerves may enhance the contrast between nerves and adjacent tissues during surgery, which may lead to improved outcomes.
PURPOSE OF THE STUDY. Analysis of the results of pilot studies in the field of fluorescent biovisualization of nerves in relation to neurosurgical practice.
MATERIALS. The analysis includes publications reporting on the results of the application of methods of fluorescent biovisualization of nerves with different fluorescence inducers.
RESULTS. Currently, promising photosensitizers that have most of the desired characteristics for in vivo image-guided fluorescent nerve surgery are fluorescents GE3126, oxazine 4, Cy5-NP41.
CONCLUSIONS. Under ideal conditions, in vivo fluorescence imaging of nerve fibers is superior to other methods due to its real-time signal acquisition, high spatial resolution, high sensitivity, ease of operation, and low cost. Although fluorescence imaging techniques are not widely used in the clinical identification of nerves, they show exceptional promise for significantly reducing the risk of neurological deficits.
About the Authors
A. Yu. RyndaRussian Federation
Rynda Artemii Yurievich
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
V. A. Olyushin
Russian Federation
Olyushin Victor Emelyanovich
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
D. M. Rostovtsev
Russian Federation
Rostovtsev Dmitry Mikhailovich
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
K. K. Kukanov
Russian Federation
Kukanov Konstatin Konstantinovich
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
S. V. Pustovoi
Russian Federation
Pustovoi Sergey Vladimirovich
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
Yu. M. Zabrodskaya
Russian Federation
Zabrodskaya Yulia Mikhailovna
St. Petersburg, Russia, 191014, st. Mayakovskaya, 12
References
1. Buckle T, Hensbergen AW, van Willigen DM. et al. Intraoperative visualization of nerves using a myelin protein-zero specific fluorescent tracer. EJNMMI Res. 2021; 11: 50. https://doi.org/10.1186/s13550021007929
2. Walsh EM, Cole D, Tipirneni KE, Bland KI, Udayakumar N, Kasten BB, Bevans SL, McGrew BM, Kain JJ, Nguyen QT, Rosenthal EL, Warram JM. Fluorescence Imaging of Nerves During Surgery. Ann Surg. 2019; 270(1): 69–76. https://doi.org/10.1097/SLA.0000000000003130
3. Xu H, Chen J, Feng ZJ, Fu K, Qiao YS, Zhang Z, Wang WJ, Wang YM, Zhang J., Perdanasari AT, Hanasono MM, Levin LS, Yang X, Hao YF, Li YX, Wo Y, Zhang YX. Shortwave infrared fluorescence in vivo imaging of nerves for minimizing the risk of intraoperative nerve injury. Nanoscale. 2019; (11): 19736–19741. https://doi.org/10.1039/C9NR06066A
4. Whitney M, Crisp J, Nguyen L et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol. 2011; 29: 352–356. https://doi.org/10.1038/nbt.1764
5. Gibbs-Strauss SL, Nasr KA, Fish KM, Khullar O, Ashitate Y, Siclovan TM, Johnson BF, Barnhardt NE, Hehir CAT, Frangioni JV. Nervehighlighting fluorescent contrast agents for image-guided surgery. Mol Imaging. 2011; 10(2): 91–101.
6. Chen Y, Zhang H, Lei Z, Zhang F. Recent Advances in Intraoperative Nerve Bioimaging: Fluorescence-Guided Surgery for Nerve Preservation. Small structures. Small Structures. 2020; 1 (1): 2000036. https://doi.org/10.1002/sstr.202000036
7. Hingorani DV, Whitney MA, Friedman B, Kwon JK, Crisp JL, Xiong Q, Gross L, Kane CJ, Tsien RY, Nguyen QT. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics. 2018; 8(15): 4226–4237. https://doi.org/10.7150/thno.23084
8. Pedro MT, Grübel N, Durner G, Pala A, Wirtz CR, Koenig RW. Intraoperative Sodium-Fluorescence Imaging in Peripheral Nerve Sheath Tumors (PNST) — A New Additional Promising Diagnostic Tool. Front Oncol. 2021; 11: 655392. https://doi.org/10.3389/fonc.2021.655392
9. Stankoff B, Wang YM, Bottlaender M, Aigrot MS, Dolle F, Wu CY, Feinstein D, Huang GF, Semah F, Mathis CA, Klunk W, Gould RM, Lubetzki C, Zalc B. Imaging of CNS myelin by positron-emission tomography. Proc Natl Acad Sci. USA 2006; 103(24): 9304–9309. https://doi.org/10.1073/pnas.0600769103
10. Hernández IC, Mohan S, Minderler S et al. Super-resolved fluorescence imaging of peripheral nerve. Sci Rep. 2022; 12: 12450. https://doi.org/10.1038/s41598022167690
11. Rynda A. Yu., Rostovtsev D. M., Olyushin V. E. Fluorescence-Guided Resection of Glioma — literature review. Russian Neurosurgical Journal named after professor A. L. Polenov, 2018, vol. X, no.1, pp.97–110. (In Russ.)
12. Heckel A, Weiler M, Xia A, et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015; 10: e0130833. https://doi.org/10.1371/journal.pone.0130833
13. Rynda A. Yu., Olyushin V. E., Rostovtsev D. M., Zabrodskaya Y. M., Papayan G. V. Fluorescent diagnostics with chlorin e6 in surgery of low-grade glioma. Biomedical Photonics. 2021;10(4):35–43. (In Russ.)
14. Wang LG, Barth CW, Kitts CH, Mebrat MD, Montano AR, House BJ, McCoy ME, Antaris AL, Galvis SN, McDowall I, Sorger JM, Gibbs SL. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med. 2020; 12(542): eaay0712. https://doi.org/10.1126/scitranslmed.aay0712
15. Nguyen JT, Ashitate Y, Buchanan IA, et al. Face transplant perfusion assessment using near-infrared fluorescence imaging. J Surg Res. 2012; 177: e83-e88. https://doi.org/10.1016/j.jss.2012.04.015
16. Hussain T, Nguyen LT, Whitney M, et al. Improved facial nerve identification during parotidectomy with fluorescently labeled peptide. Laryngoscope. 2016; 126: 2711–2717. https://doi.org/10.1002/lary.26057
17. Enquist LW, Card JP. Recent advances in the use of neurotropic viruses for circuit analysis. Curr Opin Neurobiol. 2003; 13(5): 603–606. https://doi.org/10.1016/j.conb.2003.08.001
18. Wagner OJ, Louie BE, Vallie'res E, et al. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thorac Surg. 2012; 94: 622–625. https://doi.org/10.1016/j.athoracsur.2012.04.119
19. Mangano MS, De Gobbi A, Beniamin F, et al. Robot-assisted nervesparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia. 2017; 85: 29–31. https://doi.org/10.5301/uj.5000244
20. Cage TA, Yuh EL, Hou SW, et al. Visualization of nerve fibers and their relationship to peripheral nerve tumors by diffusion tensor imaging. Neurosurg Focus. 2015; 39: E 16. https://doi.org/10.3171/2015.6.FOCUS15235
21. Stone JJ, Graffeo CS, de Ruiter GCW, et al. Intraoperative intravenous fluorescein as an adjunct during surgery for peroneal intraneural ganglion cysts. Acta Neurochir (Wien). 2018; 160: 651–654. https://doi.org/10.1007/s0070101834770
22. Barth CW, Gibbs SL. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Theranostics. 2017; 7(3): 573–593. https://doi.org/10.7150/thno.17433
23. Marangos NR, Illing B, Kruger J, Laszig R. In vivo visualization of the cochlear nerve and nuclei with fluorescent axonal tracers. Hearing Res. 2001; 162(1–2): 48–52. https://doi.org/10.1016/s0378–5955(01)003689.
24. Barnoiu OS, Garcia Galisteo E, Baron Lopez F, et al. Prospective urodynamic model for prediction of urinary incontinence after robotassisted radical prostatectomy. Urol Int. 2014; 92: 306–309. https://doi.org/10.1159/000354352
25. KleinJan GH, Buckle T, van Willigen DM, et al. Fluorescent lectins for local in vivo visualization of peripheral nerves. Molecules. 2014; 19: 9876–9892. https://doi.org/10.3390/molecules19079876
26. Koch M, Zenk J, Iro H. Long-term results of morbidity after parotid gland surgery in benign disease. Laryngoscope. 2010; 120: 724–730. https://doi.org/10.1002/lary.20822
27. Chen SC, Wang MC, Wang WH, et al. Fluorescence-assisted visualization of facial nerve during mastoidectomy: a novel technique for preventing iatrogenic facial paralysis. Auris Nasus Larynx. 2015; 42: 113–118. https://doi.org/10.1016/j.anl.2014.08.008
28. Massaad CA, Zhang G, Pillai L, Azhdarinia A, Liu WQ, Sheikh KA. Fluorescently-tagged anti-ganglioside antibody selectively identifies peripheral nerve in living animals. Sci Rep. 2015; 5: 15766. https://doi.org/10.1038/srep15766
29. Zhang X, Chen Y, Lian L et al. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021; (14): 628–634. https://doi.org/10.1007/s1227402030815
30. Kobbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S. Current concepts in neuroanatomical tracing. Prog Neurobiol. 2000; 62(4): 327–351. https://doi.org/10.1016/s0301–0082(00)000198
31. Gustafson TP, Yan Y, Newton P, Hunter DA, Achilefu S, Akers WJ, Mackinnon SE, Johnson PJ, Berezin MY. A NIR Dye for Development of Peripheral Nerve Targeted Probes. Med Chem Comm. 2012; 3: 685–690. https://doi.org/10.1039/C2MD00297C
32. He K, Li P, Zhang Z, Liu J, Liu P, Gong S, Chi C, Liu P, Chen C, Tian J. Intraoperative near-infrared fluorescence imaging can identify pelvic nerves in patients with cervical cancer in real time during radical hysterectomy. Eur J Nucl Med Mol Imaging. 2022; 49(8): 2929–2937. https://doi.org/10.1007/s00259–022–05686-z
33. Park MH, Hyun H, Ashitate Y, Wada H, Park G, Lee JH, Njiojob C, Henary M, Frangioni JV, Choi HS. Prototype Nerve-Specific NearInfrared Fluorophores. Theranostics. 2014; 4(8): 823–833. https://doi.org/10.7150/thno.8696
34. Hackman KM, Doddapaneni BS, Barth CW, et al. Polymeric micelles as carriers for nerve-highlighting fluorescent probe delivery. Mol Pharm. 2015; 12: 4386–4394. https://doi.org/10.1021/acs.molpharmaceut.5b00582
35. Zhao YQ, Maharjan S, Sun YQ, Yang Z, Yang EF, Zhou N, Lu LJ, Whittaker AK, Yang B, Lin Q. Red fluorescent AuNDs with conjugation of cholera toxin subunit B (CTB) for extendeddistance retro-nerve transporting and long-time neural tracing. Acta Biomater. 2020; 102: 394–402. https://doi.org/10.1016/j.actbio.2019.11.045
36. Hussain T, Mastrodimos MB, Raju SC, Glasgow HL, Whitney M, Friedman B, Moore JD, Kleinfeld D, Steinbach P, Messer K, Pu MY, Tsien RY, Nguyen QT. Fluorescently Labeled Peptide Increases Identification of Degenerated Facial Nerve Branches during Surgery and Improves Functional Outcome. PLoS ONE. 2015; 10(3): e0119600. https://doi.org/10.1371/journal.pone.0119600
37. Schubert R, Trenholm S, Balint K, Kosche G, Cowan CS, Mohr MA, Munz M, Martinez-Martin D, Flaschner G, Newton R, Krol J, Scherf BG, Yonehara K, Wertz A, Ponti A, Ghanem A, Hillier D, Conzelmann KK, Muller DJ, Roska B. Virus stamping for targeted single-cell infection in vitro and in vivo. Nat Biotechnol. 2018; 36(1): 81–88. https://doi.org/10.1038/nbt.4034.
38. Wu CY, Tian DH, Feng Y, Polak P, Wei JJ, Sharp A, Stankoff B, Lubetzki C, Zalc B, Mufson EJ, Gould RM, Feinstein DL, Wang YM. A Novel Fluorescent Probe That Is Brain Permeable and Selectively Binds to Myelin. J Histochem Cytochem. 2006; 54(9): 997 1004. https://doi.org/10.1369/jhc.5A6901.2006
39. Cotero VE, Kimm SY, Siclovan TM, Zhang R, Kim EM, Matsumoto K, Gondo T, Scardino PT, Yazdanfar S, Laudone VP, Hehir CAT. Improved Intraoperative Visualization of Nerves through a Myelin-Binding Fluorophore and Dual-Mode Laparoscopic Imaging. Plos One 2015; 10(6): e0130276. https://doi.org/10.1371/journal.pone.0130276
40. Rynda A. Yu., Olyushin V. E., Rostovtsev D. M., Zabrodskaya Yu.M., Tastanbekov M. M., Papayan G. V. Intraoperative fluorescence control with chlorin E 6 in resection of glial brain tumors. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko, 2021, vol.85, no.4, pp.20–28. (In Russ.).
41. Gonzales J, Hernández-Gil J, Wilson TC, Adilbay D, Cornejo M, de Souza Franca PD, Guru N, Schroeder CI, King GF, Lewis JS, Reiner T. Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Molecular Pharmaceutics. 2021; 18(3): 940–951. https://doi.org/10.1021/acs.molpharmaceut.0c00946
42. Rynda AYu, Olyushin VE, Rostovtsev DM, Zabrodskaya YuM, Papayan GV. Comparative analysis of 5-ALA and chlorin E 6 fluorescence-guided navigation in malignant glioma surgery. Pirogov Russian Journal of Surgery = Khirurgiya. Zurnal im. N.I. Pirogova. 2022;(1):5–14. (In Russ.)
Review
For citations:
Rynda A.Yu., Olyushin V.A., Rostovtsev D.M., Kukanov K.K., Pustovoi S.V., Zabrodskaya Yu.M. A possibilities of intraoperative nerve fluorescent biovisualization in neurosurgical practice. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(1):68-83. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_1_68