Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Familial case of encephalocele with autosomal dominant inheritance

https://doi.org/10.56618/2071-2693_2023_15_4_169

EDN: DOLIMK

Abstract

Brain herniation is a congenital combined malformation of the brain and skull. Cause of this pathology is a defect in the closure of the anterior end of the neural tube during embryogenesis. The uniqueness of this clinical review is based on the fact that we have considered case of occipital encephalocele in a child, the family anamnesis of which suggests an autosomal dominant inheritance of the defect.

MATERIALS AND METHODS: We have analyzed results of the clinical and anamnestic examination and microsurgical treatment of encephalocele in a patient at the pediatric neurosurgery department № 7 of the Almazov National Medical Research Centre. A genealogical method was used to identify the nature of inheritance of the defect. Analyze of polymorphisms in the folate cycle genes (MTHFR, MTR, MTRR) was performed.

RESULTS: The patient and his relatives have a mild form of the disease with only the meninges present in the hernial sac. The patient underwent successful microsurgical correction of the anomaly. Analysis of the pedigree made it possible to identify 7 more relatives on the maternal side with similar formations in the occipital and frontal region, without severe consequences for life and health, with a probability of inheritance of about 50 %, which indicates an autosomal dominant type of inheritance. We also have identified heterozygous carriage of the MTHFR: 677 C>T (Ala222Val) and MTRR: 66 A>G (lle22Met) polymorphisms, likely predisposing to the formation of a mild phenotype of the disease

CONCLUSION: Serious defects in the formation and closure of the neural tube are in most cases incompatible with life. Such pathology is most often associated with habitual miscarriage or gross malformations such as cranial and spinal hernias. These developmental anomalies have a neurological component complementary to their severity, depending on the degree of involvement of brain structures.

The clinical case we have examined is atypical — the child and his relatives have only external manifestations of the anomaly without obvious focal and cerebral symptoms and a decrease in the quality of life.

Clinical and genealogical data allow us to assess this situation as a genetic disease with autosomal dominant inheritance.

About the Authors

E. I. Kishinskaya
St. Petersburg State Pediatric Medical University
Russian Federation

Ekaterina I. Kishinskaya.

Litovskaya str., 2, St. Petersburg, 194100



A. P. Gerasimov
Almazov National Medical Research Centre
Russian Federation

Alexander P. Gerasimov.

Akkuratova str., 2, St. Petersburg, 197341



A. S. Shapovalov
Almazov National Medical Research Centre
Russian Federation

Alexander S. Shapovalov.

Akkuratova str., 2, St. Petersburg, 197341



A. V. Kim
Almazov National Medical Research Centre
Russian Federation

Alexandr V. Kim.

Akkuratova str., 2, St. Petersburg, 197341



References

1. Ten Donkelaar, H.J., Bekker, M., Renier, W.O., Hori, A., Shiota, K. (2014). Neurulation and Neural Tube defects. In: Clinical Neuroembryology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54687-7_4

2. Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci. 2022;17(1):1679–1688. published 2022 dec 22, https://doi.org/10.1515/biol-2022–0504

3. Kondo, A., Matsuo, T., Morota, N., Kondo, A. S., Okai, I., & Fukuda, H. (2017). Neural tube defects: Risk factors and preventive measures. Congenital anomalies, 57(5), 150–156. https://doi.org/10.1111/cga.12227

4. de Regil LM, Fernandez-Gaxiola AC, Dowswell T, Pena-Rosas JP: Effects and safety of pericon-ceptional folate supplementation for preventing birth defects. Cochrane database Syst Rev. 2010, CD 007950, https://doi.org/10.1002/14651858.CD007950.pub2

5. Menezo Y, Elder K, Clement A, Clement p. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules. 2022 Jan 24; 12(2):197, PMID: 35204698; PMCID: PMC 8961567 https://doi.org/10.3390/biom12020197

6. Occipital Encephalocele: Cause, Incidence, Neuroimaging and Surgical ManagementIvana Markovic, Petar Bosnjakovic and Zoran Milenkovic, Current Pediatric Reviews, 2020, 16, 200–205 (doi нет через https) PMID: 31656152, PMCID: PMC8193807, DOI: 10.2174/1573396315666191018161535

7. Munteanu O, Cîrstoiu MM, Filipoiu FM, et al. The etiopathogenic and morphological spectrum of anencephaly: a comprehensive review of literature. Rom J Morphol Embryol. 2020;61(2):335–343. https://doi.org/10.47162/RJME.61.2.03

8. Logan, C.V., Abdel-Hamed, Z. & Johnson, C. A. Molecular Genetics and pathogenic Mechanisms for the Severe Ciliopathies: Insights into Neurodevelopment and pathogenesis of Neural Tube defects. Mol Neurobiol 43, 12–26 (2011). https://doi.org/10.1007/s12035-010-8154-0

9. Turkyilmaz A, Geckinli BB, Alavanda C, Arslan Ates E, Buyukbayrak EE, Eren SF, Arman A. Meckel-Gruber Syndrome: Clinical and Molecular Genetic profiles in Two Fetuses and Review of the Current Literature. Genet Test Mol Biomarkers. 2021 Jun;25(6):445–451 Epub 2021 Jun 4. PMID: 34096792 https://doi.org/10.1089/gtmb.2020.0311

10. Iannetti P, Schwartz CE, Dietz-Band J, Light E, Timmerman J, Chessa L. Norman-Roberts syndrome: clinical and molecular studies. Am J Med Genet. 1993 Aug 1;47(1):95–9 PMID:8368261. https://doi.org/10.1002/ajmg.1320470120

11. Sharma N, Passi S. Goldenhar syndrome. Indian J Dent Res. 2013 Jan-Feb;24(1):149. PMID: 23852257, https://doi.org/10.4103/0970–9290.114952

12. Protzenko T, dos Santos Gomes Junior SC, Bellas A, Salomão JFM. Hydrocephalus and occipital encephaloceles: presentation of a series and review of the literature. Childs Nerv Syst. 2021;37(11):3437–3445 https://doi.org/10.1007/s00381-021-05312-7

13. Doolin MT, Barbaux S, Mcdonnell M, Hoess K, whitehead AS, Mitchell LE. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet. 2002 Nov;71(5):1222–6. Epub 2002 Oct 9. PMID: 12375236; PMCID: PMC 385102 https://doi.org/10.1086/344209

14. Graham IM, Daly LE, Refsum HM. plasma homocysteine as a risk factor for vascular disease. The European Concerted Action project. JAMA. 1997;277(22):1775–1781.https://doi.org/10.1001/jama.1997.03540460039030

15. Us Saba N, Faheem M and Manik P (2023) Neurulation and the possible Etiologies of Neural Tube defect. Neural Tube defects — unusual perspectives [working Title]. IntechOpen http://dx.doi.org/10.5772/intechopen.109487

16. Steele JW, Kim SE, Finnell RH. One-carbon metabolism and folate transporter genes: do they factor prominently in the genetic etiology of neural tube defects? Biochimie. 2020 Jun;173:27–32. Epub 2020 Feb 13. PMID: 32061804; PMCID: PMC 7253344. https://doi.org/10.1016/j.biochi.2020.02.005

17. Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal Folate and Choline Levels and Brain and Cognitive development in Children: A Critical Narrative Review. Nutrients. 2022; 14(2):364. https://doi.org/10.3390/nu14020364

18. O’Leary, V. B., Mills, J. L., Pangilinan, F., Kirke, P. N., Cox, C., Conley, M., Weiler, A., Peng, K., Shane, B., Scott, J. M., Parle-Mcdermott, A., Molloy, A. M., Brody, L. C., & Members of the Birth defects Research Group (2005). Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Molecular genetics and metabolism, 85(3), 220–227. https://doi.org/10.1016/j.ymgme.2005.02.003

19. Elikbaev G., Khachatryan V., Osipov I., Sarychev S. Epidemiology and early diagnosis of congenital malformations of spinal column and spinal cord. Current pediatrics. 2008;7(4):58–61.

20. Relton CL, Wilding CS, Pearce MS, et al. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet. 2004;41(4):256–260. https://doi.org/10.1136/jmg.2003.010694

21. Dewelle WK, Melka DS, Aklilu AT, et al. polymorphisms in Maternal Selected Folate Metabolism-Related Genes in Neural Tube Defect-Affected Pregnancy. Adv Biomed Res. 2023;12:160. Published 2023 Jun 30, https://doi.org/10.4103/abr.abr_103_22

22. Nasri K, Midani F, Kallel A, et al. Association of MTHFR C 677T, MTHFR A1298C, and MTRR A66G Polymorphisms with Neural Tube Defects in Tunisian Parents. Pathobiology. 2019;86(4):190–200, https://doi.org/10.1159/000499498

23. Хачатрян В. А., Орлов Ю. А., Ким А. В. Осложнения клапанных ликворошунтирующих операций. СПб.: ФГБУ «РНХИ им. проф. А. Л. Поленова» Минздрава России; 2013.

24. Хачатрян В. А., Ким Вон Ги, Ким А. В. Гидроцефалия при опухолях головного и спинного мозга. СПб.: Десятка; 2008. 256 с.


Review

For citations:


Kishinskaya E.I., Gerasimov A.P., Shapovalov A.S., Kim A.V. Familial case of encephalocele with autosomal dominant inheritance. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(4):169-175. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_4_169. EDN: DOLIMK

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)