Значение нарушений сна при опухолях головного мозга (обзор литературы)
https://doi.org/10.56618/2071-2693_2023_15_2_166
Аннотация
Злокачественные опухоли головного мозга отличаются особой агрессивностью. Различного рода нарушения сна у пациентов с опухолевыми поражениями головного мозга являются широко распространенной проблемой. Известен факт о существенном системном проопухолевом воздействии нарушенного сна у пациентов со злокачественными новообразованиями различных локализаций. В связи с этим проведен обзор и систематизация современных знаний о нарушении сна при злокачественных поражениях, с особым акцентом на злокачественные новообразования головного мозга. В частности, рассмотрены известные механизмы, с помощью которых расстройства сна способствуют прогрессированию злокачественных опухолей. Во второй же части статьи представлена теоретическая база обратного процесса. А именно, описано несколько патофизиологических механизмов, благодаря которым пациенты со злокачественными опухолями головного мозга чаще других сталкиваются с нарушениями сна. Есть основания полагать, что нормализация архитектоники сна и циркадных ритмов у пациентов со злокачественными опухолями мозга, во‑первых, обладает потенциалом улучшить качество их жизни, а во‑вторых, вселяет надежду, открывая возможность активно тормозить прогрессирование данного заболевания, особенно когда другие методы лечения уже исчерпаны. Именно поэтому столь необходимыми представляются будущие исследования данного вопроса.
Ключевые слова
Об авторах
Т. А. ШустоваРоссия
Шустова Татьяна Алексеевна
Санкт-Петербург, ул. Аккуратова, д. 2, 197341
И. К. Терновых
Россия
Терновых Иван Константинович
Санкт-Петербург, ул. Аккуратова, д. 2, 197341
М. П. Топузова
Россия
Топузова Мария Петровна
Санкт-Петербург, ул. Аккуратова, д. 2, 197341
Т. М. Алексеева
Россия
Алексеева Татьяна Михайловна
Санкт-Петербург, ул. Аккуратова, д. 2, 197341
Н. Е. Иванова
Россия
Иванова Наталия Евгеньевна
Санкт-Петербург, ул. Аккуратова, д. 2, 197341
Список литературы
1. Алексеев А. Г., Данилов В. И., Шахбазова Э. С., Алжеев Э. Б. Оптимизация организации медицинской помощи больным с нейро-онкологической патологией на основе знаний об эпидемиологии первичных опухолей головного мозга (по данным республики Татарстан). Российский нейрохирургический журнал им. проф. А. Л. Поленова. 2022;14(1–1):6–10. edN gFprZw.
2. Fritschi l, glass dC, Heyworth jS, aronson K, girschik j, Boyle T, et al. Hypotheses for mechanisms linking shiftwork and cancer. med Hypotheses. 2011;77:430–6. https://doi.org/10.1016/j. mehy.2011.06.002
3. armstrong TS, vera-Bolanos e, acquaye aa, gilbert mr, ladha H, mendoza T. The symptom burden of primary brain tumors: evidence for a core set of tumorand treatment-related symptoms. Neuro-oncol. 2016;18:252–60. https://doi.org/10.1093/neuonc/nov166
4. Batash r, asna N, Schaffer p, Francis N, Schaffer m. glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr med Chem. 2017;24:3002–9. https://doi.org/10.2174/0929867324 666170516123206
5. Braun K, ahluwalia mS. Treatment of glioblastoma in older adults. Curr oncol rep. 2017;19:81. https://doi.org/10.1007/s11912–017–0644-z
6. perrin Sl, Samuel mS, Koszyca B, Brown mp, ebert lm, oksdath m, et al. glioblastoma heterogenity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochem Soc Trans. 2019;47:625–38. https://doi.org/10.1042/BST20180444
7. armstrong TS, Shade my, Breton g, gilbert mr, mahajan a, Scheurer me, et al. Sleep-wake disturbance in patients with brain tumors. Neuro-oncol. 2017;19:323–3. https://doi.org/10.1093/neuonc/now119
8. jeon mS, dhillon Hm, agar mr. Sleep disturbance of adults with a brain tumor and their family caregivers: a systematic review. Neurooncol. 2017;19:1035–46. https://doi.org/10.1093/neuonc/nox019
9. Kim Br, Chun mH, Han ey, Kim dK. Fatigue assessment and rehabilitation outcomes in patients with brain tumors. Support Care Cancer. 2012;20:805–12. https://doi.org/10.1007/s00520-011-1153-5
10. rha Sy, lee j. Symptom clusters during palliative chemotherapy and their influence on functioning and quality of life. Support Care Cancer. 2017;25:1519–27. https://doi.org/10.1007/s00520–016–3545-z
11. redeker NS, pigeon wr, Boudreau ea. Incorporating measures of sleep quality into cancer studies. Support Care Cancer. 2015;23:1145–55. https://doi.org/10.1007/s00520-014-2537-0
12. Cirelli C, Tononi g. Is sleep essential? ploS Biol. 2008;6: e216. https://doi.org/10.1371/journal.pbio.0060216
13. Kim ja, Kim HS, Choi SH, jang jy, jeong mj, lee SI. The importance of the Circadian Clock in regulating plant metabolism. Int j mol Sci. 2017;18 https://doi.org/10.3390/ijms18122680
14. miyazaki S, liu Cy, Hayashi y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci res. 2017;118:3–12. https://doi.org/10.1016/j.neures.2017.04.017
15. villafuerte g, miguel-puga a, rodríguez em, machado S, manjarrez e, arias-Carrión o. Sleep deprivation and oxidative stress in animal models: a systematic review. oxid med Cell longev. 2015;2015:234952. https://doi.org/10.1155/2015/234952
16. Hong CC, Fallon jH, Friston Kj, Harris jC. rapid eye movements in sleep furnish a unique probe into consciousness. Front psychol. 2018;9:2087. https://doi.org/10.3389/fpsyg.2018.02087
17. vyazovskiy vv, Harris Kd. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat rev Neurosci. 2013;14:443–51. https://doi.org/10.1038/nrn3494
18. Field jm, Bonsall mB. The evolution of sleep is inevitable in a periodic world. ploS one. 2018;13: e0201615. https://doi.org/10.1371/journal.pone.0201615
19. mcewen BS, Karatsoreos IN. Sleep deprivation and circadian disruption: stress, allostasis, and allostatic load. Sleep med Clin. 2015;10:1–10. https://doi.org/10.1016/j.jsmc.2014.11.007
20. Tobaldini e, Constantino g, Solbiati m, Cogliati C, Kara T, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav rev. 2017; 74(pt B): 321–329
21. lowe Cj, Safati a, Hall pa. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav rev. 2017;80:586–604. https://doi.org/10.1016/j.neubiorev.2017.07.010
22. potter gd, Skene dj, arendt j, Cade je, grant pj, Hardie lj. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. endocr rev. 2016;37:584–608. https://doi.org/10.1210/er.2016–1083
23. St-onge mp. Sleep-obesity relation: underlying mechanisms and consequences for treatment. obes rev. 2017;18(Suppl 1):34–9. https://doi.org/10.1111/obr.12499
24. Irwin mr. why sleep is important for health: a psychoneuroimmunology perspective. annu rev psychol. 2015;66:143–72. https://doi.org/10.1146/annurev-psych-010213–115205
25. Irwin mr, olmstead r, Carroll je. Sleep disturbance, sleep duration, and inflammation: a systematic review and metaanalysis of cohort studies and experimental sleep deprivation. Biol psychiatry. 2016;80:40–52. https://doi.org/10.1016/j.biopsych.2015.05.014
26. Sateia mj. International classification of sleep disorders-third edition. Chest. 2014;146:1387–94. https://doi.org/10.1378/chest.14–0970
27. armstrong TS, gilbert mr. practical strategies for management of fatigue and sleep disorders in people with brain tumors. Neuro-oncol. 2012;14(Suppl 4): iv65–72. https://doi.org/10.1093/neuonc/nos210
28. Howell d, oliver TK, Keller-olaman S, davidson jr, garland S, Samuels C, et al. Sleep disturbance in adults with cancer: a systematic review of evidence for best practices in assessment and management for clinical practice. ann oncol. 2014;25:791–800. https://doi.org/10.1093/annonc/mdt506
29. Chen y, Tan F, wei l, li x, lyu Z, Feng x, et al. Sleep duration and the risk of cancer: a systematic review and meta-analysis including dose–response relationship. BmC Cancer. 2018;18:1149. https://doi.org/10.1186/s12885–018–5025-y
30. Kakizaki m, Inoue K, Kuriyama S, Sone T, matsuda-ohmori K, Nakaya N, et al. Sleep duration and the risk of prostate cancer: the ohsaki Cohort Study. Br j Cancer. 2008;99:176–8. https://doi.org/10.1038/sj.bjc.6604425
31. Kakizaki m, Kuriyama S, Sone T, matsuda-ohmori K, Hozawa a, Nakaya N, et al. Sleep duration and the risk of breast cancer: the ohsaki Cohort Study. Br j Cancer. 2008;99:1502–5. https://doi.org/10.1038/sj.bjc.6604684
32. Thompson Cl, larkin eK, patel S, Berger Na, redline S, li l. Short duration of sleep increases risk of colorectal adenoma. Cancer. 2011;117:841–7. https://doi.org/10.1002/cncr.25507
33. Castriotta rj, murthy jN. Sleep disorders in patients with traumatic brain injury: a review. CNS drugs. 2011;25:175–85. https://doi.org/10.2165/11584870-000000000-00000
34. provini F, lombardi C, lugaresi e. Insomnia in neurological diseases. Semin Neurol. 2005;25:81–9. https://doi.org/10.1055/s-2005–867074
35. yavas C, Zorlu F, ozyigit g, gurkayanak m, yavas g, yuce d, et al. Health-related quality of life in high-grade glioma patients: a prospective single-center study. Support Care Cancer. 2012;20:2315– 25. https://doi.org/10.1007/s00520-011-1340-4
36. Heyde I, Kiehn jT, oster H. mutual influence of sleep and circadian clocks on physiology and cognition. Free radic Biol med. 2018;119:8–16. https://doi.org/10.1016/j.freeradbiomed.2017.11.003
37. Fu l, lee CC. The circadian clock: pacemaker and tumour suppressor. Nat rev Cancer. 2003;3:350–61. https://doi.org/10.1038/nrc1072
38. Sulli g, lam mTy, panda S. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer. 2019;5:475–94. https://doi.org/10.1016/j.trecan.2019.07.002
39. dong Z, Zhang g, qu m, gimple rC, wu q, qiu Z, et al. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer discov. 2019;9:1556–73. https://doi.org/10.1158/2159–8290. CD-19–0215
40. yu m, li w, wang q, wang y, lu F. Circadian regulator Nr 1d 2 regulates glioblastoma cell proliferation and motility. oncogene. 2018;37:4838–53. https://doi.org/10.1038/s41388-018-0319-8
41. li a, lin x, Tan x, yin B, Han w, Zhao j, et al. Circadian gene clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive mir-124. FeBS lett. 2013;587:2455–60. https://doi.org/10.1016/j.febslet.2013.06.018
42. Cacciapuoti F. oxidative stress as “mother” of many human diseases at strong clinical impact. j Cardiovasc med Cardiol 3(1): 1–6
43. matschke v, Theiss C, matschke j. oxidative stress: the lowest common denominator of multiple diseases. Neural regen res. 2019;14:238–41. https://doi.org/10.4103/1673–5374.244780
44. Bansal a, Simon mC. glutathione metabolism in cancer progression and treatment resistance. j Cell Biol. 2018;217:2291–8. https://doi.org/10.1083/jcb.201804161
45. aaling NN, Nedergaard m, diNuzzo m. Cerebral metabolic changes during sleep. Curr Neurol Neurosci rep. 2018;18:57. https://doi.org/10.1007/s11910-018-0868-9
46. Kumar a, dhull dK, gupta v, Channana p, Singh a, Bhardwaj m, et al. role of glutathione-S-transferases in neurological problems. expert opin Ther pat. 2017;27(3):299–309
47. Zhu Z, du S, du y, ren j, ying g, yan Z. glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. j Neurochem. 2018;144:93–104. https://doi.org/10.1111/jnc.14250
48. Sowers jl, johnson Km, Conrad C, patterson jT, Sowers lC. The role of inflammation in brain cancer. adv exp med Biol. 2014;816:75–105. https://doi.org/10.1007/978-3-0348-0837-8_4
49. waziri a. glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N am. 2010;21:31–42. https://doi.org/10.1016/j.nec.2009.08.005
50. wilcox ja, ramakrishna r, magge r. Immunotherapy in glioblastoma. world Neurosurg. 2018;116:518–28. https://doi.org/10.1016/j.wneu.2018.04.020
51. everson Ca, Toth la. Systemic bacterial invasion induced by sleep deprivation. am j physiol regul Integr Comp physiol. 2000;278: r 905–16. https://doi.org/10.1152/ajpregu.2000.278.4.R905
52. aguirre CC. Sleep deprivation: a mind-body approach. Curr opin pulm med. 2016;22:583–8. https://doi.org/10.1097/MCP.0000000000000323
53. Hurtado-alvarado g, domínguez-Salazar e, pavon l, velázquezmoctezuma j, gómez-gonzález B. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. j Immunol res. 2016;2016:4576012. https://doi.org/10.1155/2016/4576012
54. Bovbjerg dH. Circadian disruption and cancer: Sleep and immune regulation. Brain Behav Immun. 2003;17(Suppl 1): S 48–50. https://doi.org/10.1016/S 0889–1591 (02) 00066-1
55. deng T, lyon Cj, Bergin S, Caligiuri ma, Hsueh wa. obesity, inflammation, and cancer. annu rev pathol. 2016;11:421–49. https://doi.org/10.1146/annurev-pathol-012615–044359
56. Font-Burgada j, Sun B, Karin m. obesity and cancer: the oil that feeds the flame. Cell metab. 2016;23:48–62. https://doi.org/10.1016/j.cmet.2015.12.015
57. Barami K, lyon l, Conell C. Type 2 diabetes mellitus and glioblastoma multiforme: assessing risk and survival: results of a large retrospective study and systematic review of the literature. world Neurosurg. 2017;106:300–7. https://doi.org/10.1016/j.wneu.2017.06.164
58. Chambless lB, parker Sl, Hassam-malani l, mcgirt mj, Thompson rC. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. j Neurooncol. 2012;106:383–9. https://doi.org/10.1007/s11060-011-0676-4
59. orešković d, almahariq F, majić a, Sesar p, Živković m, maraković j, et al. Hba1c in patients with intracranial meningiomas wHo grades I and II: a preliminary study. IuBmB life. 2020 https://doi.org/10.1002/iub.2268
60. orešković d, raguž m, predrijevac N, rotim a, romić d, majić a, et al. Hba1c in patients with glioblastomas — a preliminary Study. world Neurosurg. 2020 https://doi.org/10.1016/j.wneu.2020.05.231
61. Costello rB, lentino Cv, Boyd CC, o’Connell ml, Crawford CC, Sprengel ml, et al. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr j. 2014;13:106. https://doi.org/10.1186/1475-2891-13-106
62. Blask de. melatonin, sleep disturbance and cancer risk. Sleep med rev. 2009;13:257–64. https://doi.org/10.1016/j.smrv.2008.07.007
63. Neamati F, asemi Z. The effects of melatonin on signaling pathways and molecules involved in glioma. Fundam Clin pharmacol. 2020;34:192–9. https://doi.org/10.1111/fcp.12526
64. Zheng x, pang B, gu g, gao T, Zhang r, pang q, et al. melatonin inhibits glioblastoma stem-like cells through suppression of eZH2NoTCH1 signaling axis. Int j Biol Sci. 2017;13:245–53. https://doi.org/10.7150/ijbs.16818
65. reiter rj. mechanisms of cancer inhibition by melatonin. j pineal res. 2004;37:213–4. https://doi.org/10.1111/j.1600–079X.2004.00165.x
66. Claustrat B, leston j. melatonin: physiological effects in humans. Neurochirurgie. 2015;61:77–84. https://doi.org/10.1016/j.neuchi.2015.03.002
67. Hardeland r. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientificworldjournal. 2012;2012:640389. https://doi.org/10.1100/2012/640389
68. Touitou y, reinberg a, Touitou d. association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. life Sci. 2017;173:94–106. https://doi.org/10.1016/j.lfs.2017.02.008
69. Chaput jp. Sleep patterns, diet quality and energy balance. physiol Behav. 2014;134:86–91. https://doi.org/10.1016/j.physbeh.2013.09.006
70. Huang CT, Chiang rp, Chen Cl, Tsai yj. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep (Basel) 2014;37:1513–23. https://doi.org/10.5665/sleep.4002
71. pfeffer m, Korf Hw, wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. gen Comp endocrinol. 2018;258:215–21. https://doi.org/10.1016/j.ygcen.2017.05.013
72. reiter rj, mayo jC, Tan dx, Sainz rm, alatorre-jimenez m, qin l. melatonin as an antioxidant: under promises but over delivers. j pineal res. 2016;61:253–78. https://doi.org/10.1111/jpi.12360
73. reiter rj, Tan dx, galano a. melatonin: exceeding expectations. physiology (Bethesda) 2014;29:325–33
74. johnson dr, wefel jS. relationship between cognitive function and prognosis in glioblastoma. CNS oncol. 2013;2:195–201. https://doi.org/10.2217/cns.13.5
75. gaine me, Chatterjee S, abel T. Sleep deprivation and the epigenome. Front Neural Circuits. 2018;12:14. https://doi.org/10.3389/fncir.2018.00014
76. gusyatiner o, Hegi me. glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol. 2018;51:50–8. https://doi.org/10.1016/j.semcancer.2017.11.010
77. mainio a, Hakko H, Niemelä a, Koivukangas j, räsänen p. Insomnia among brain tumor patients: a population-based prospective study of tumor patients in northern Finland. j psychosoc oncol. 2013;31:507–16. https://doi.org/10.1080/07347332.2013.822048
78. Stahl Sm, layzer rB, aminoff mj, Townsend jj, Feldon S. Continuous cataplexy in a patient with a midbrain tumor: the limp man syndrome. Neurology. 1980;30:1115–8. https://doi.org/10.1212/WNL.30.10.1115
79. murillo-rodriguez e, arias-Carrion o, Zavala-garcia a, Sarroramirez a, Huitron-resendiz S, et al. Basic sleep mechanisms: an integrative review. Cent Nerv Syst agents med Chem. 2012;12:38–54. https://doi.org/10.2174/187152412800229107
80. Tesoriero C, del gallo F, Bentivoglio m. Sleep and brain infections. Brain res Bull. 2019;145:59–74. https://doi.org/10.1016/j.brainresbull.2018.07.002
81. moise d, madhusoodanan S. psychiatric symptoms associated with brain tumors: a clinical enigma. CNS Spectr. 2006;11(1):28–31. https://doi:10.1017/s1092852900024135
82. litofsky NS, Farace e, anderson F jr, et al. depression in patients with high-grade glioma: results of the glioma outcomes project. Neurosurgery. 2004;54(2):358–367. https://doi:10.1227/01.neu.0000103450.94724.a2
83. Corne S, Bshouty Z. Basic principles of control of breathing. respir Care Clin N am. 2005;11:147–72. https://doi.org/10.1016/j.rcc.2005.02.011
84. Newton K, malik v, lee-Chiong T. Sleep and breathing. Clin Chest med. 2014;35:451–6. https://doi.org/10.1016/j.ccm.2014.06.001
85. Braley Tj, Boudreau ea. Sleep disorders in multiple sclerosis. Curr Neurol Neurosci rep. 2016;16:50. https://doi.org/10.1007/s11910-016-0649-2
86. discolo Cm, akst lm, Schlossberg l, greene d. anterior cranial fossa gliolastoma with sleep apnea as initial manifestation. am j otolaryngol. 2005;26:327–9. https://doi.org/10.1016/j.amjoto.2005.01.014
87. leu rm. Sleep-related breathing disorders and the Chiari 1 malformation. Chest. 2015;148:1346–52. https://doi.org/10.1378/chest.14–3090
88. Foldvary-Schaefer Nr, waters Te. Sleep-disordered breathing. Continuum (minneap minn). 2017;23(4, Sleep Neurology):1093–116. https://doi.org/10.1212/01.CON.0000522245.13784.f6
89. ramar K, olson ej. management of common sleep disorders. am Fam physician. 2013;88:231–8
90. Khazaie H, veronese m, Noori K, emamian F, Zarei m, ashkan K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: a systematic review of the resting-state fmrI. Neurosci Biobehav rev. 2017;77:219–31. https://doi.org/10.1016/j.neubiorev.2017.03.013
91. urrila aS, artiges e, massicotte j, miranda r, vulser H, BézivinFrere p. Sleep habits, academic performance, and the adolescent brain structure. Sci rep. 2017;7:41678. https://doi.org/10.1038/srep41678
92. Bonsignore mr, Biaimonte p, mazzuca e, Castrogiovanni a, marrone o. obstructive sleep apnea and comorbidities: a dangerous liaison. multidiscip respir med. 2019;14:8. https://doi.org/10.1186/s40248-019-0172-9
93. Saxena K, jolly mK. acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 2019;9 https://doi.org/10.3390/biom9080339
94. young T, peppard pe, gottlieb dj. epidemiology of obstructive sleep apnea: a population health perspective. am j respir Crit Care med. 2002;165:1217–39. https://doi.org/10.1164/rccm.2109080
95. Holst SC, landolt Hp. Sleep-wake neurochemistry. Sleep med Clin. 2018;13:132–46. https://doi.org/10.1016/j.jsmc.2018.03.002
96. pedersen Np, Ferrari l, venner a, wang jl, abbott SB, vujovic N, et al. Supramamillary glutamate neurons are a key node of the arousal system. Nat Commun. 2017;8:1405. https://doi.org/10.1038/s41467-017-01004-6
97. pal B. Involvment of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell mol life Sci. 2018;75:2917–49. https://doi.org/10.1007/s00018-018-2837-5
98. maus a, peters gj. glutamate and α-ketoglutarate: key players in glioma metabolism. amino acids. 2017;49:21–32. https://doi.org/10.1007/s00726-016-2342-9
99. danbolt NC. glutamate uptake. prog Neurobiol. 2001;65:1–105. https://doi.org/10.1016/S 0301–0082 (00) 00067-8
100. Nicholls d, attwell d. The release and uptake of excitatory amino acids. Trends pharmacol Sci. 1990;11:462–8. https://doi.org/10.1016/0165–6147(90)90129-V
101. Noch e, Khalili K. molecular mechanisms of necrosis in glioblastoma: The role of glutamate excitotoxicity. Cancer Biol Ther. 2009;8:1791–7. https://doi.org/10.4161/cbt.8.19.9762
102. louis dN. molecular pathology of malignant gliomas. annu rev pathol. 2006;1:97–117. https://doi.org/10.1146/annurev.pathol.1.110304.100043
103. Corsi l, mescola a, alessandrini a. glutamate receptors and glioblastoma multiforme: an old „route“ for new perspectives. Int j mol Sci. 2019;20 https://doi.org/10.3390/ijms20071796
104. majos C, alonso j, aguilera C, Serrallonga m, Coll S, acebes jj, et al. utility of proton mr spectroscopy in the diagnosis of radiologically atypical intracranial meningiomas. Neuroradiology. 2003;45:129–36. https://doi.org/10.1007/s00234-002-0933-5
105. monleon d, morales jm, gonzalez-darder j, Talamantes F, Cortes o, et al. Benign and atypical meningioma metabolic signatures by highresolution magic-angle spinning molecular profiling. j proteome res. 2008;7:2882–8. https://doi.org/10.1021/pr800110a
106. Chen d, yin Z, Fang B. measurements and status of sleep quality in patients with cancers. Support Care Cancer. 2018;26:405–14. https://doi.org/10.1007/s00520–017–3927-x
Рецензия
Для цитирования:
Шустова Т.А., Терновых И.К., Топузова М.П., Алексеева Т.М., Иванова Н.Е. Значение нарушений сна при опухолях головного мозга (обзор литературы). Российский нейрохирургический журнал имени профессора А. Л. Поленова. 2023;15(2):166-175. https://doi.org/10.56618/2071-2693_2023_15_2_166
For citation:
Shustova T.A., Ternovykh I.K., Topuzova M.P., Alekseeva T.M., Ivanova N.E. The significance of sleep disorders in brain tumors (review of the literature). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(2):166-175. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_2_166