Preview

Российский нейрохирургический журнал имени профессора А. Л. Поленова

Расширенный поиск

Значение нарушений сна при опухолях головного мозга (обзор литературы)

https://doi.org/10.56618/2071-2693_2023_15_2_166

Аннотация

Злокачественные опухоли головного мозга отличаются особой агрессивностью. Различного рода нарушения сна у пациентов с опухолевыми поражениями головного мозга являются широко распространенной проблемой. Известен факт о существенном системном проопухолевом воздействии нарушенного сна у пациентов со злокачественными новообразованиями различных локализаций. В связи с этим проведен обзор и систематизация современных знаний о нарушении сна при злокачественных поражениях, с особым акцентом на злокачественные новообразования головного мозга. В частности, рассмотрены известные механизмы, с помощью которых расстройства сна способствуют прогрессированию злокачественных опухолей. Во второй же части статьи представлена теоретическая база обратного процесса. А именно, описано несколько патофизиологических механизмов, благодаря которым пациенты со злокачественными опухолями головного мозга чаще других сталкиваются с нарушениями сна. Есть основания полагать, что нормализация архитектоники сна и циркадных ритмов у пациентов со злокачественными опухолями мозга, во‑первых, обладает потенциалом улучшить качество их жизни, а во‑вторых, вселяет надежду, открывая возможность активно тормозить прогрессирование данного заболевания, особенно когда другие методы лечения уже исчерпаны. Именно поэтому столь необходимыми представляются будущие исследования данного вопроса. 

Об авторах

Т. А.  Шустова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Шустова Татьяна Алексеевна

Санкт-Петербург, ул. Аккуратова, д. 2, 197341



И. К. Терновых
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Терновых Иван Константинович

Санкт-Петербург, ул. Аккуратова, д. 2, 197341



М. П. Топузова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Топузова Мария Петровна

Санкт-Петербург, ул. Аккуратова, д. 2, 197341



Т.  М. Алексеева
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Алексеева Татьяна Михайловна

Санкт-Петербург, ул. Аккуратова, д. 2, 197341



Н. Е. Иванова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Иванова Наталия Евгеньевна

Санкт-Петербург, ул. Аккуратова, д. 2, 197341



Список литературы

1. Алексеев А. Г., Данилов В. И., Шахбазова Э. С., Алжеев Э. Б. Оптимизация организации медицинской помощи больным с нейро-онкологической патологией на основе знаний об эпидемиологии первичных опухолей головного мозга (по данным республики Татарстан). Российский нейрохирургический журнал им. проф. А. Л. Поленова. 2022;14(1–1):6–10. edN gFprZw.

2. Fritschi l, glass dC, Heyworth jS, aronson K, girschik j, Boyle T, et al. Hypotheses for mechanisms linking shiftwork and cancer. med Hypotheses. 2011;77:430–6. https://doi.org/10.1016/j. mehy.2011.06.002

3. armstrong TS, vera-Bolanos e, acquaye aa, gilbert mr, ladha H, mendoza T. The symptom burden of primary brain tumors: evidence for a core set of tumorand treatment-related symptoms. Neuro-oncol. 2016;18:252–60. https://doi.org/10.1093/neuonc/nov166

4. Batash r, asna N, Schaffer p, Francis N, Schaffer m. glioblastoma multiforme, diagnosis and treatment; recent literature review. Curr med Chem. 2017;24:3002–9. https://doi.org/10.2174/0929867324 666170516123206

5. Braun K, ahluwalia mS. Treatment of glioblastoma in older adults. Curr oncol rep. 2017;19:81. https://doi.org/10.1007/s11912–017–0644-z

6. perrin Sl, Samuel mS, Koszyca B, Brown mp, ebert lm, oksdath m, et al. glioblastoma heterogenity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochem Soc Trans. 2019;47:625–38. https://doi.org/10.1042/BST20180444

7. armstrong TS, Shade my, Breton g, gilbert mr, mahajan a, Scheurer me, et al. Sleep-wake disturbance in patients with brain tumors. Neuro-oncol. 2017;19:323–3. https://doi.org/10.1093/neuonc/now119

8. jeon mS, dhillon Hm, agar mr. Sleep disturbance of adults with a brain tumor and their family caregivers: a systematic review. Neurooncol. 2017;19:1035–46. https://doi.org/10.1093/neuonc/nox019

9. Kim Br, Chun mH, Han ey, Kim dK. Fatigue assessment and rehabilitation outcomes in patients with brain tumors. Support Care Cancer. 2012;20:805–12. https://doi.org/10.1007/s00520-011-1153-5

10. rha Sy, lee j. Symptom clusters during palliative chemotherapy and their influence on functioning and quality of life. Support Care Cancer. 2017;25:1519–27. https://doi.org/10.1007/s00520–016–3545-z

11. redeker NS, pigeon wr, Boudreau ea. Incorporating measures of sleep quality into cancer studies. Support Care Cancer. 2015;23:1145–55. https://doi.org/10.1007/s00520-014-2537-0

12. Cirelli C, Tononi g. Is sleep essential? ploS Biol. 2008;6: e216. https://doi.org/10.1371/journal.pbio.0060216

13. Kim ja, Kim HS, Choi SH, jang jy, jeong mj, lee SI. The importance of the Circadian Clock in regulating plant metabolism. Int j mol Sci. 2017;18 https://doi.org/10.3390/ijms18122680

14. miyazaki S, liu Cy, Hayashi y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci res. 2017;118:3–12. https://doi.org/10.1016/j.neures.2017.04.017

15. villafuerte g, miguel-puga a, rodríguez em, machado S, manjarrez e, arias-Carrión o. Sleep deprivation and oxidative stress in animal models: a systematic review. oxid med Cell longev. 2015;2015:234952. https://doi.org/10.1155/2015/234952

16. Hong CC, Fallon jH, Friston Kj, Harris jC. rapid eye movements in sleep furnish a unique probe into consciousness. Front psychol. 2018;9:2087. https://doi.org/10.3389/fpsyg.2018.02087

17. vyazovskiy vv, Harris Kd. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat rev Neurosci. 2013;14:443–51. https://doi.org/10.1038/nrn3494

18. Field jm, Bonsall mB. The evolution of sleep is inevitable in a periodic world. ploS one. 2018;13: e0201615. https://doi.org/10.1371/journal.pone.0201615

19. mcewen BS, Karatsoreos IN. Sleep deprivation and circadian disruption: stress, allostasis, and allostatic load. Sleep med Clin. 2015;10:1–10. https://doi.org/10.1016/j.jsmc.2014.11.007

20. Tobaldini e, Constantino g, Solbiati m, Cogliati C, Kara T, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav rev. 2017; 74(pt B): 321–329

21. lowe Cj, Safati a, Hall pa. The neurocognitive consequences of sleep restriction: a meta-analytic review. Neurosci Biobehav rev. 2017;80:586–604. https://doi.org/10.1016/j.neubiorev.2017.07.010

22. potter gd, Skene dj, arendt j, Cade je, grant pj, Hardie lj. Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. endocr rev. 2016;37:584–608. https://doi.org/10.1210/er.2016–1083

23. St-onge mp. Sleep-obesity relation: underlying mechanisms and consequences for treatment. obes rev. 2017;18(Suppl 1):34–9. https://doi.org/10.1111/obr.12499

24. Irwin mr. why sleep is important for health: a psychoneuroimmunology perspective. annu rev psychol. 2015;66:143–72. https://doi.org/10.1146/annurev-psych-010213–115205

25. Irwin mr, olmstead r, Carroll je. Sleep disturbance, sleep duration, and inflammation: a systematic review and metaanalysis of cohort studies and experimental sleep deprivation. Biol psychiatry. 2016;80:40–52. https://doi.org/10.1016/j.biopsych.2015.05.014

26. Sateia mj. International classification of sleep disorders-third edition. Chest. 2014;146:1387–94. https://doi.org/10.1378/chest.14–0970

27. armstrong TS, gilbert mr. practical strategies for management of fatigue and sleep disorders in people with brain tumors. Neuro-oncol. 2012;14(Suppl 4): iv65–72. https://doi.org/10.1093/neuonc/nos210

28. Howell d, oliver TK, Keller-olaman S, davidson jr, garland S, Samuels C, et al. Sleep disturbance in adults with cancer: a systematic review of evidence for best practices in assessment and management for clinical practice. ann oncol. 2014;25:791–800. https://doi.org/10.1093/annonc/mdt506

29. Chen y, Tan F, wei l, li x, lyu Z, Feng x, et al. Sleep duration and the risk of cancer: a systematic review and meta-analysis including dose–response relationship. BmC Cancer. 2018;18:1149. https://doi.org/10.1186/s12885–018–5025-y

30. Kakizaki m, Inoue K, Kuriyama S, Sone T, matsuda-ohmori K, Nakaya N, et al. Sleep duration and the risk of prostate cancer: the ohsaki Cohort Study. Br j Cancer. 2008;99:176–8. https://doi.org/10.1038/sj.bjc.6604425

31. Kakizaki m, Kuriyama S, Sone T, matsuda-ohmori K, Hozawa a, Nakaya N, et al. Sleep duration and the risk of breast cancer: the ohsaki Cohort Study. Br j Cancer. 2008;99:1502–5. https://doi.org/10.1038/sj.bjc.6604684

32. Thompson Cl, larkin eK, patel S, Berger Na, redline S, li l. Short duration of sleep increases risk of colorectal adenoma. Cancer. 2011;117:841–7. https://doi.org/10.1002/cncr.25507

33. Castriotta rj, murthy jN. Sleep disorders in patients with traumatic brain injury: a review. CNS drugs. 2011;25:175–85. https://doi.org/10.2165/11584870-000000000-00000

34. provini F, lombardi C, lugaresi e. Insomnia in neurological diseases. Semin Neurol. 2005;25:81–9. https://doi.org/10.1055/s-2005–867074

35. yavas C, Zorlu F, ozyigit g, gurkayanak m, yavas g, yuce d, et al. Health-related quality of life in high-grade glioma patients: a prospective single-center study. Support Care Cancer. 2012;20:2315– 25. https://doi.org/10.1007/s00520-011-1340-4

36. Heyde I, Kiehn jT, oster H. mutual influence of sleep and circadian clocks on physiology and cognition. Free radic Biol med. 2018;119:8–16. https://doi.org/10.1016/j.freeradbiomed.2017.11.003

37. Fu l, lee CC. The circadian clock: pacemaker and tumour suppressor. Nat rev Cancer. 2003;3:350–61. https://doi.org/10.1038/nrc1072

38. Sulli g, lam mTy, panda S. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer. 2019;5:475–94. https://doi.org/10.1016/j.trecan.2019.07.002

39. dong Z, Zhang g, qu m, gimple rC, wu q, qiu Z, et al. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer discov. 2019;9:1556–73. https://doi.org/10.1158/2159–8290. CD-19–0215

40. yu m, li w, wang q, wang y, lu F. Circadian regulator Nr 1d 2 regulates glioblastoma cell proliferation and motility. oncogene. 2018;37:4838–53. https://doi.org/10.1038/s41388-018-0319-8

41. li a, lin x, Tan x, yin B, Han w, Zhao j, et al. Circadian gene clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive mir-124. FeBS lett. 2013;587:2455–60. https://doi.org/10.1016/j.febslet.2013.06.018

42. Cacciapuoti F. oxidative stress as “mother” of many human diseases at strong clinical impact. j Cardiovasc med Cardiol 3(1): 1–6

43. matschke v, Theiss C, matschke j. oxidative stress: the lowest common denominator of multiple diseases. Neural regen res. 2019;14:238–41. https://doi.org/10.4103/1673–5374.244780

44. Bansal a, Simon mC. glutathione metabolism in cancer progression and treatment resistance. j Cell Biol. 2018;217:2291–8. https://doi.org/10.1083/jcb.201804161

45. aaling NN, Nedergaard m, diNuzzo m. Cerebral metabolic changes during sleep. Curr Neurol Neurosci rep. 2018;18:57. https://doi.org/10.1007/s11910-018-0868-9

46. Kumar a, dhull dK, gupta v, Channana p, Singh a, Bhardwaj m, et al. role of glutathione-S-transferases in neurological problems. expert opin Ther pat. 2017;27(3):299–309

47. Zhu Z, du S, du y, ren j, ying g, yan Z. glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. j Neurochem. 2018;144:93–104. https://doi.org/10.1111/jnc.14250

48. Sowers jl, johnson Km, Conrad C, patterson jT, Sowers lC. The role of inflammation in brain cancer. adv exp med Biol. 2014;816:75–105. https://doi.org/10.1007/978-3-0348-0837-8_4

49. waziri a. glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N am. 2010;21:31–42. https://doi.org/10.1016/j.nec.2009.08.005

50. wilcox ja, ramakrishna r, magge r. Immunotherapy in glioblastoma. world Neurosurg. 2018;116:518–28. https://doi.org/10.1016/j.wneu.2018.04.020

51. everson Ca, Toth la. Systemic bacterial invasion induced by sleep deprivation. am j physiol regul Integr Comp physiol. 2000;278: r 905–16. https://doi.org/10.1152/ajpregu.2000.278.4.R905

52. aguirre CC. Sleep deprivation: a mind-body approach. Curr opin pulm med. 2016;22:583–8. https://doi.org/10.1097/MCP.0000000000000323

53. Hurtado-alvarado g, domínguez-Salazar e, pavon l, velázquezmoctezuma j, gómez-gonzález B. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. j Immunol res. 2016;2016:4576012. https://doi.org/10.1155/2016/4576012

54. Bovbjerg dH. Circadian disruption and cancer: Sleep and immune regulation. Brain Behav Immun. 2003;17(Suppl 1): S 48–50. https://doi.org/10.1016/S 0889–1591 (02) 00066-1

55. deng T, lyon Cj, Bergin S, Caligiuri ma, Hsueh wa. obesity, inflammation, and cancer. annu rev pathol. 2016;11:421–49. https://doi.org/10.1146/annurev-pathol-012615–044359

56. Font-Burgada j, Sun B, Karin m. obesity and cancer: the oil that feeds the flame. Cell metab. 2016;23:48–62. https://doi.org/10.1016/j.cmet.2015.12.015

57. Barami K, lyon l, Conell C. Type 2 diabetes mellitus and glioblastoma multiforme: assessing risk and survival: results of a large retrospective study and systematic review of the literature. world Neurosurg. 2017;106:300–7. https://doi.org/10.1016/j.wneu.2017.06.164

58. Chambless lB, parker Sl, Hassam-malani l, mcgirt mj, Thompson rC. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. j Neurooncol. 2012;106:383–9. https://doi.org/10.1007/s11060-011-0676-4

59. orešković d, almahariq F, majić a, Sesar p, Živković m, maraković j, et al. Hba1c in patients with intracranial meningiomas wHo grades I and II: a preliminary study. IuBmB life. 2020 https://doi.org/10.1002/iub.2268

60. orešković d, raguž m, predrijevac N, rotim a, romić d, majić a, et al. Hba1c in patients with glioblastomas — a preliminary Study. world Neurosurg. 2020 https://doi.org/10.1016/j.wneu.2020.05.231

61. Costello rB, lentino Cv, Boyd CC, o’Connell ml, Crawford CC, Sprengel ml, et al. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr j. 2014;13:106. https://doi.org/10.1186/1475-2891-13-106

62. Blask de. melatonin, sleep disturbance and cancer risk. Sleep med rev. 2009;13:257–64. https://doi.org/10.1016/j.smrv.2008.07.007

63. Neamati F, asemi Z. The effects of melatonin on signaling pathways and molecules involved in glioma. Fundam Clin pharmacol. 2020;34:192–9. https://doi.org/10.1111/fcp.12526

64. Zheng x, pang B, gu g, gao T, Zhang r, pang q, et al. melatonin inhibits glioblastoma stem-like cells through suppression of eZH2NoTCH1 signaling axis. Int j Biol Sci. 2017;13:245–53. https://doi.org/10.7150/ijbs.16818

65. reiter rj. mechanisms of cancer inhibition by melatonin. j pineal res. 2004;37:213–4. https://doi.org/10.1111/j.1600–079X.2004.00165.x

66. Claustrat B, leston j. melatonin: physiological effects in humans. Neurochirurgie. 2015;61:77–84. https://doi.org/10.1016/j.neuchi.2015.03.002

67. Hardeland r. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientificworldjournal. 2012;2012:640389. https://doi.org/10.1100/2012/640389

68. Touitou y, reinberg a, Touitou d. association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. life Sci. 2017;173:94–106. https://doi.org/10.1016/j.lfs.2017.02.008

69. Chaput jp. Sleep patterns, diet quality and energy balance. physiol Behav. 2014;134:86–91. https://doi.org/10.1016/j.physbeh.2013.09.006

70. Huang CT, Chiang rp, Chen Cl, Tsai yj. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep (Basel) 2014;37:1513–23. https://doi.org/10.5665/sleep.4002

71. pfeffer m, Korf Hw, wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. gen Comp endocrinol. 2018;258:215–21. https://doi.org/10.1016/j.ygcen.2017.05.013

72. reiter rj, mayo jC, Tan dx, Sainz rm, alatorre-jimenez m, qin l. melatonin as an antioxidant: under promises but over delivers. j pineal res. 2016;61:253–78. https://doi.org/10.1111/jpi.12360

73. reiter rj, Tan dx, galano a. melatonin: exceeding expectations. physiology (Bethesda) 2014;29:325–33

74. johnson dr, wefel jS. relationship between cognitive function and prognosis in glioblastoma. CNS oncol. 2013;2:195–201. https://doi.org/10.2217/cns.13.5

75. gaine me, Chatterjee S, abel T. Sleep deprivation and the epigenome. Front Neural Circuits. 2018;12:14. https://doi.org/10.3389/fncir.2018.00014

76. gusyatiner o, Hegi me. glioma epigenetics: From subclassification to novel treatment options. Semin Cancer Biol. 2018;51:50–8. https://doi.org/10.1016/j.semcancer.2017.11.010

77. mainio a, Hakko H, Niemelä a, Koivukangas j, räsänen p. Insomnia among brain tumor patients: a population-based prospective study of tumor patients in northern Finland. j psychosoc oncol. 2013;31:507–16. https://doi.org/10.1080/07347332.2013.822048

78. Stahl Sm, layzer rB, aminoff mj, Townsend jj, Feldon S. Continuous cataplexy in a patient with a midbrain tumor: the limp man syndrome. Neurology. 1980;30:1115–8. https://doi.org/10.1212/WNL.30.10.1115

79. murillo-rodriguez e, arias-Carrion o, Zavala-garcia a, Sarroramirez a, Huitron-resendiz S, et al. Basic sleep mechanisms: an integrative review. Cent Nerv Syst agents med Chem. 2012;12:38–54. https://doi.org/10.2174/187152412800229107

80. Tesoriero C, del gallo F, Bentivoglio m. Sleep and brain infections. Brain res Bull. 2019;145:59–74. https://doi.org/10.1016/j.brainresbull.2018.07.002

81. moise d, madhusoodanan S. psychiatric symptoms associated with brain tumors: a clinical enigma. CNS Spectr. 2006;11(1):28–31. https://doi:10.1017/s1092852900024135

82. litofsky NS, Farace e, anderson F jr, et al. depression in patients with high-grade glioma: results of the glioma outcomes project. Neurosurgery. 2004;54(2):358–367. https://doi:10.1227/01.neu.0000103450.94724.a2

83. Corne S, Bshouty Z. Basic principles of control of breathing. respir Care Clin N am. 2005;11:147–72. https://doi.org/10.1016/j.rcc.2005.02.011

84. Newton K, malik v, lee-Chiong T. Sleep and breathing. Clin Chest med. 2014;35:451–6. https://doi.org/10.1016/j.ccm.2014.06.001

85. Braley Tj, Boudreau ea. Sleep disorders in multiple sclerosis. Curr Neurol Neurosci rep. 2016;16:50. https://doi.org/10.1007/s11910-016-0649-2

86. discolo Cm, akst lm, Schlossberg l, greene d. anterior cranial fossa gliolastoma with sleep apnea as initial manifestation. am j otolaryngol. 2005;26:327–9. https://doi.org/10.1016/j.amjoto.2005.01.014

87. leu rm. Sleep-related breathing disorders and the Chiari 1 malformation. Chest. 2015;148:1346–52. https://doi.org/10.1378/chest.14–3090

88. Foldvary-Schaefer Nr, waters Te. Sleep-disordered breathing. Continuum (minneap minn). 2017;23(4, Sleep Neurology):1093–116. https://doi.org/10.1212/01.CON.0000522245.13784.f6

89. ramar K, olson ej. management of common sleep disorders. am Fam physician. 2013;88:231–8

90. Khazaie H, veronese m, Noori K, emamian F, Zarei m, ashkan K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: a systematic review of the resting-state fmrI. Neurosci Biobehav rev. 2017;77:219–31. https://doi.org/10.1016/j.neubiorev.2017.03.013

91. urrila aS, artiges e, massicotte j, miranda r, vulser H, BézivinFrere p. Sleep habits, academic performance, and the adolescent brain structure. Sci rep. 2017;7:41678. https://doi.org/10.1038/srep41678

92. Bonsignore mr, Biaimonte p, mazzuca e, Castrogiovanni a, marrone o. obstructive sleep apnea and comorbidities: a dangerous liaison. multidiscip respir med. 2019;14:8. https://doi.org/10.1186/s40248-019-0172-9

93. Saxena K, jolly mK. acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 2019;9 https://doi.org/10.3390/biom9080339

94. young T, peppard pe, gottlieb dj. epidemiology of obstructive sleep apnea: a population health perspective. am j respir Crit Care med. 2002;165:1217–39. https://doi.org/10.1164/rccm.2109080

95. Holst SC, landolt Hp. Sleep-wake neurochemistry. Sleep med Clin. 2018;13:132–46. https://doi.org/10.1016/j.jsmc.2018.03.002

96. pedersen Np, Ferrari l, venner a, wang jl, abbott SB, vujovic N, et al. Supramamillary glutamate neurons are a key node of the arousal system. Nat Commun. 2017;8:1405. https://doi.org/10.1038/s41467-017-01004-6

97. pal B. Involvment of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell mol life Sci. 2018;75:2917–49. https://doi.org/10.1007/s00018-018-2837-5

98. maus a, peters gj. glutamate and α-ketoglutarate: key players in glioma metabolism. amino acids. 2017;49:21–32. https://doi.org/10.1007/s00726-016-2342-9

99. danbolt NC. glutamate uptake. prog Neurobiol. 2001;65:1–105. https://doi.org/10.1016/S 0301–0082 (00) 00067-8

100. Nicholls d, attwell d. The release and uptake of excitatory amino acids. Trends pharmacol Sci. 1990;11:462–8. https://doi.org/10.1016/0165–6147(90)90129-V

101. Noch e, Khalili K. molecular mechanisms of necrosis in glioblastoma: The role of glutamate excitotoxicity. Cancer Biol Ther. 2009;8:1791–7. https://doi.org/10.4161/cbt.8.19.9762

102. louis dN. molecular pathology of malignant gliomas. annu rev pathol. 2006;1:97–117. https://doi.org/10.1146/annurev.pathol.1.110304.100043

103. Corsi l, mescola a, alessandrini a. glutamate receptors and glioblastoma multiforme: an old „route“ for new perspectives. Int j mol Sci. 2019;20 https://doi.org/10.3390/ijms20071796

104. majos C, alonso j, aguilera C, Serrallonga m, Coll S, acebes jj, et al. utility of proton mr spectroscopy in the diagnosis of radiologically atypical intracranial meningiomas. Neuroradiology. 2003;45:129–36. https://doi.org/10.1007/s00234-002-0933-5

105. monleon d, morales jm, gonzalez-darder j, Talamantes F, Cortes o, et al. Benign and atypical meningioma metabolic signatures by highresolution magic-angle spinning molecular profiling. j proteome res. 2008;7:2882–8. https://doi.org/10.1021/pr800110a

106. Chen d, yin Z, Fang B. measurements and status of sleep quality in patients with cancers. Support Care Cancer. 2018;26:405–14. https://doi.org/10.1007/s00520–017–3927-x


Рецензия

Для цитирования:


Шустова Т.А., Терновых И.К., Топузова М.П., Алексеева Т.М., Иванова Н.Е. Значение нарушений сна при опухолях головного мозга (обзор литературы). Российский нейрохирургический журнал имени профессора А. Л. Поленова. 2023;15(2):166-175. https://doi.org/10.56618/2071-2693_2023_15_2_166

For citation:


Shustova T.A., Ternovykh I.K., Topuzova M.P., Alekseeva T.M., Ivanova N.E. The significance of sleep disorders in brain tumors (review of the literature). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(2):166-175. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_2_166

Просмотров: 121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)