Features of brainstem damage in hypertensive hydrocephalus in children
https://doi.org/10.56618/2071-2693_2024_16_2_85
EDN: LSUNWU
Abstract
INTRODUCTION. The high frequency of hypertensive hydrocephalus and the effect of craniocerebral disproportion on the brainstem determine the relevance of this problem.
AIM. Show the possibility of indirect assessment of intracranial pressure (ICP) in children with hypertensive hydrocephalus based on non-invasive electrophysiological criteria and their use as a prognostic criterion.
MATERIALS AND METHODS. Electrophysiological studies were performed with the analysis of electroencephalography (EEG) in 96 children and brainstem auditory evoked potentials (BAEPs) in 42 (23 with occlusive and 19 with communicating). The functional state of the cerebral cortex and brain was assessed on the basis of the EEG, and the stem structures – using the BAEPs method.
RESULTS. Almost all (97.9 %) patients showed stable general changes in biopotentials in the form of high-amplitude hypersynchronous polymorphic activity, spreading to all parts of the cerebral cortex. Evaluation of BAEPs dynamics after liquor bypass surgery (LSS) in the immediate postoperative period showed a positive dynamic of BAEPs in 23 (79.3%) cases with the appearance of previously unidentified peaks, restoration of the waveform and the V/I amplitude ratio. In 13 (44.8 %) children, the amplitude and time parameters of BAEPs completely returned to normal.
About the Authors
M. R. MamakhanovRussian Federation
Magomed R. Mamakhanov – Dr. of Sci. (Med.), Senior Researcher at the Research Laboratory of Child Neurosurgery, Neurosurgeon of the Department of Child Neurosurgery No. 7
2 Akkuratova street, St. Petersburg, 197341
K. E. Lebedev
Russian Federation
Konstantin E. Lebedev – Cand. of Sci. (Med.), Neurologist at the Department of Сhild Neurosurgery No. 7
2 Akkuratova street, St. Petersburg, 197341
K. B. Abramov
Russian Federation
Konstantin B. Abramov – Cand. of Sci. (Med.), Deputy Chief Physician, Neurosurgeon
2 Akkuratova street, St. Petersburg, 197341
N. K. Samochernykh
Russian Federation
Nikita K. Samochernykh – Neurosurgeon at the Department of Neurosurgery № 5
2 Akkuratova street, St. Petersburg, 197341
M. S. Nikolaenko
Russian Federation
Mikhail S. Nikolaenko – Cand. of Sci. (Med.), Neurosurgeon at the Department of Child Neurosurgery No. 7
2 Akkuratova street, St. Petersburg, 197341
References
1. Samochernykh N. K., Abramov K. B., Nikolaenko M. S. et al. Treatment of patients with posthemorrhagic hydrocephalus. Rossiiskii Vestnik Perinatologiii Pediatrii. 2021;66(5):97–104. (In Russ.)]. Doi: 10.21508/1027-4065-2021-66-5-97-104. EDN: FLGGXJ.
2. Khachatryan W. A., Samochernykh K. A. Endoscopy in paediatric neurosurgery. SPb.: Branko; 2015. 276 р. (In Russ.)].
3. Evensen K. B., Eide P. K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS. 2020;17(1). Doi: 10.1186/s12987-020-00195-3.
4. Eide P. K., Sorteberg W. Outcome of Surgery for Idiopathic Normal Pressure Hydrocephalus: Role of Preoperative Static and Pulsatile Intracranial Pressure. World Neurosurgery. 2016;(86):186–193. Doi: 10.1016/j.wneu.2015.09.067.
5. Popovic D., Khoo M., Lee S. Noninvasive Monitoring of Intracranial Pressure. BIOMENG. 2009;2(3):165–179. Do i:10.2174/1874764710902030165.
6. Xu W., Gerety P., Aleman T., Swanson J., Taylor J. Noninvasive methods of detecting increased intracranial pressure. Childs Nerv Syst. 2016;32(8):1371–1386. Doi:10.1007/s00381-016-3143-x.
7. Zhang X., Medow J. E., Iskandar B. J. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas. 2017;38(8):R143–R182. Doi: 10.1088/1361-6579/aa7256.
8. Schubert-Bast S., Berghaus L., Filmann N., Freiman T., Strzelczyk A., Kieslich M. Risk and risk factors for epilepsy in shunt-treated children with hydrocephalus. European Journal of Paediatric Neurology. 2019;23(6):819–826. Doi: 10.1016/j.ejpn.2019.09.004.
9. Tully H. M., Kukull W. A., Mueller B. A. Clinical and Surgical Factors Associated With Increased Epilepsy Risk in Children With Hydrocephalus. Pediatric Neurology. 2016;5(9):18–22. Doi: 10.1016/j.pediatrneurol.2016.02.011.
10. Venkataramana N. Hydrocephalus Indian scenario – A review. J Pediatr Neurosci. 2011;6(3):11. Doi: 10.4103/1817-1745.85704.
11. Tadevosyan A., Kornbluth J. Brain Herniation and Intracranial Hypertension. Neurologic Clinics. 2021;39(2):293–318. Doi: 10.1016/j.ncl.2021.02.005.
12. Legatt A. D. Brainstem Auditory Evoked Potentials (BAEPs). Encyclopedia of the Neurological Sciences. Published online. 2014:505–508. Doi: 10.1016/b978-0-12-385157-4.00520-0.
13. Pediatric neurosurgery: National guidelines; eds by K. A. Samochernykh. SPb.: PZR; 2024. 576 p. (In Russ.)].
Review
For citations:
Mamakhanov M.R., Lebedev K.E., Abramov K.B., Samochernykh N.K., Nikolaenko M.S. Features of brainstem damage in hypertensive hydrocephalus in children. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2024;16(2):85–91. (In Russ.) https://doi.org/10.56618/2071-2693_2024_16_2_85. EDN: LSUNWU