Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Primary multiple tumors of the nervous system of different histological types in the structure of hereditary tumor syndromes

https://doi.org/10.56618/2071-2693_2024_16_2_150

EDN: JSXZVH

Abstract

It is known that most cancers arise as a result of genetic mutations leading either to loss of function of tumor suppressor genes or to activation of oncogenes against the background of a decrease in the body’s antitumor immune surveillance.

A number of patients with primary multiple cerebral tumors of various histological types may have one or another hereditary tumor syndrome.

This article discusses 27 hereditary diseases, one of the phenotypic manifestations of which are tumors of the nervous system, such as: neurofibromatosis 1 (Recklinghausen disease) and types 2; schwannomatosis; tuberous sclerosis; retinoblastoma; syndromes: Noonan, LEOPARD, Costello, Legius, Turcot 1 and 2 types 1, Li – Fraumeni, DICER, von Hippil – Lindau, Cowden, Gorlin, rhabdoid tumor predisposition, familial paraganglioma, melanoma-astrocytoma, BAP1, ELP1 tumor predisposition – medulloblastomas, Louis – Bar, Nijmegen, Wiskott – Aldrich, Bloom, Rubinstein – Taybi, as well as Fanconi anemia and Carney complex.

About the Authors

N. E. Voinov
Polenov Neurosurgery Institute – the branch of Almazov National Medical Research Centre
Russian Federation

Nikita E. Voinov – Neurosurgeon

12 Mayakovskogo street, St. Petersburg, 191025



A. Yu. Ulitin
Polenov Neurosurgery Institute – the branch of Almazov National Medical Research Centre
Russian Federation

Alexey Yu. Ulitin – Dr. of Sci. (Med.), Full Professor, Honored Doctor of Russian Federation, Neurosurgeon of the Highest Qualification Category, Head at the Department of Neurosurgery No. 4

12 Mayakovskogo street, St. Petersburg, 191025



A. P. Gerasimov
Polenov Neurosurgery Institute – the branch of Almazov National Medical Research Centre
Russian Federation

Alexander P. Gerasimov – Neurologist, Geneticist, Senior Researcher at the Research Laboratory of Pediatric Neurosurgery

12 Mayakovskogo street, St. Petersburg, 191025

 



K. K. Kukanov
Polenov Neurosurgery Institute – the branch of Almazov National Medical Research Centre
Russian Federation

Konstantin K. Kukanov – Cand. of Sci. (Med.), Neurosurgeon of the Highest Qualification Category at the Neurosurgical Department No. 4, Senior Researcher at the Institute of Neuro-Oncology

12 Mayakovskogo street, St. Petersburg, 191025



References

1. Voinov N. E., Ulitin A. Yu., Kukanov K. K., Gerasimov A. P., Trofimov V. E. Multiple primary cerebral tumors of various histological types. Epidemiology, structure, genetic background. Russian neurosurgical journal named after professor A. L. Polenov. 2023;15(2):122–133. (In Russ.)]. Doi: 10.56618/2071-2693_2023_15_2_122. EDN: SRQSDV.

2. Yoon S., Seger R. The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors. 2006;24(1):21–44. Doi: 10.1080/02699050500284218.

3. Rauen K. A. The RASopathies. Annu Rev Genomics Hum Genet. 2013;14(1):355–369. Doi: 10.1146/annurevgenom-091212-153523.

4. Faassen M. V. RAS-pathies: Noonan syndrome and other related diseases. The literature review. Problems of Endocrinology. 2014;60(6):45–52. Doi: 10.14341/probl201460645-52.

5. Williams V. C. et al. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123(1):124–133. Doi: 10.1542/peds.20073204.

6. Friedman J. M. Neurofibromatosis 1. GeneReviews. 1999.

7. Nix J. S., Blakeley J., Rodriguez F. J. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 2020;139(4):625–641. Doi: 10.1007/s00401-019-02002-2.

8. Lucas C.-H. G. et al. Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol. 2022;144(4):747–765. Doi: 10.1007/s00401-022-02478-5.

9. Tartaglia M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–468. Doi: 10.1038/ng772.

10. Romano A. A. et al. Noonan Syndrome: Clinical Features, Diagnosis, and Management Guidelines. Pediatrics. 2010;126(4):746–759. Doi: 10.1542/peds.2009-3207.

11. Cizmarova M. et al. Rasopathies – dysmorphic syndromes with short stature and risk of malignancy. Endocr Regul. 2013;47(4):217–222. Doi: 10.4149/endo_2013_04_217.

12. Gripp K. W. et al. HRAS mutation analysis in Costello syndrome: genotype and phenotype correlation. Am J Med Genet A. 2006;140(1):1–7. Doi: 10.1002/AJMG.A.31047.

13. Lurie I. W. Genetics of the Costello syndrome. Am J Med Genet. 1994;52(3):358–359. Doi: 10.1002/ajmg.1320520321.

14. Brems H., Legius E. Legius Syndrome, an Update. Molecular Pathology of Mutations in SPRED1. Keio J Med. 2013;62(4):107–112.

15. Asthagiri A. R. et al. Neurofibromatosis type 2. The Lancet. 2009;373(9679):1974–1986. Doi: 10.2302/kjm.2013-0002-RE.

16. Stivaros S. M. et al. Multiple synchronous sites of origin of vestibular schwannomas in neurofibromatosis Type 2. J Med Genet. 2015;52(8):557–562. Doi: 10.1136/jmedgenet-2015-103050.

17. Louis D. N., Ramesh V., Gusella J. F. Neuropathology and Molecular Genetics of Neurofibromatosis 2 and Related Tumors. Brain Pathology. 1995;5(2): 163–172. Doi: 10.1111/j.1750-3639.1995.tb00590.x.

18. Parry D. M. et al. Neurofibromatosis 2 (NF2): Clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet. 1994;52(4):450–461. Doi: 10.1002/ajmg.1320520411.

19. Gusella J. F. et al. Neurofibromatosis 2: loss of merlin’s protective spell. Curr Opin Genet Dev. 1996;6(1):87–92. Doi: 10.1016/S0959-437X(96)90016-7.

20. Sakhanova A. Sh. et al. Neurofibromatosis in children. Medicine and ecology. 2017;1:47–55. (In Russ.)].

21. Widemann B. C. et al. Phase I Trial and Pharmacokinetic Study of the Farnesyltransferase Inhibitor Tipifarnib in Children With Refractory Solid Tumors or Neurofibromatosis Type I and Plexiform Neurofibromas. Journal of Clinical Oncology. 2006;24(3):507–516. Doi: 10.1200/JCO.2005.03.8638.

22. McClatchey A. I., Giovannini M. Membrane organization and tumorigenesis – the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19(19):2265–2277. Doi: 10.1101/gad.1335605.

23. Li W. et al. Merlin/NF2 Loss-Driven Tumorigenesis Linked to CRL4DCAF1-Mediated Inhibition of the Hippo Pathway Kinases Lats1 and 2 in the Nucleus. Cancer Cell. 2014;26(1):48–60. Doi: 10.1016/j.ccr.2014.05.001.

24. Carter J. M. et al. Epithelioid Malignant Peripheral Nerve Sheath Tumor Arising in a Schwannoma, in a Patient With «Neuroblastoma-like» Schwannomatosis and a Novel Germline SMARCB1 Mutation. American Journal of Surgical Pathology. 2012;36(1):154–160. Doi: 10.1097/PAS.0b013e3182380802.

25. MacCollin M. et al. Familial schwannomatosis: Exclusion of the NF2 locus as the germline event. Neurology. 2003;60(12):1968–1974. Doi: 10.1212/01.WNL.0000070184.08740.E0.

26. Plotkin S. R. et al. Update from the 2011 International Schwannomatosis Workshop: From genetics to diagnostic criteria. Am J Med Genet A. 2013;161(3):405–416. Doi: 10.1002/ajmg.a.35760.

27. Sestini R. et al. Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosisassociated schwannomas. Hum Mutat. 2008;29(2):227–231. Doi: 10.1002/humu.20679.

28. Sampson J. R. et al. Genetic aspects of tuberous sclerosis in the west of Scotland. J Med Genet. 1989;26(1):28–31. Doi: 10.1136/jmg.26.1.28.

29. Gao X. et al. Tsc tumour suppressor proteins antagonize amino-acid–TOR signaling. Nat Cell Biol. 2002;4(9):699–704. Doi: 10.1038/ncb847.

30. Northrup H. et al. Tuberous Sclerosis Complex Diagnostic Criteria Update: Recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243–254. Doi: 10.1016/j.pediatrneurol.2013.08.001.

31. Kuz’minov A. M. et al. Turcot syndrome and Gardner’s syndrome in a female patient with familial colon adenomatosis. A case report and literature review // Voprosy neirokhirurgii imeni N. N. Burdenko. 2019;83(6):72.

32. Turcot J., Després J.-P., St. Pierre F. Malignant tumors of the central nervous system associated with familial polyposis of the colon. Dis Colon Rectum. 1959;2(5):465–468. Doi: 10.1007/BF02616938.

33. Ozerov S. S., Zakharov I. V., Talypov S. R. et al. Turko syndrome. Rare observation and review of the literature. Issues of neurosurgery named after. N. N. Burdenko. 2013.;77(3):49–53. (In Russ.)]. EDN: QBVMEZ.

34. Shlien A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet. 2015;47(3):257–262. Doi: 10.1038/ng.3202.

35. Bakry D. et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: Report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–996. Doi: 10.1016/j.ejca.2013.12.005.

36. Leoz M. L. et al. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet. 2015;8:95–107. Doi: 10.2147/TACG.S51484.

37. Masciari S. et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat. 2012;133(3):1125–1130. Doi: 10.1007/s10549-012-1993-9.

38. Pugh T. J. et al. Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene. 2014;33(45):5295–5302. Doi: 10.1038/onc.2014.150.

39. Schultz K. A. et al. DICER1 syndrome and pleuropulmonary blastoma: a report from the International Pleuropulmonary Blastoma Registry. Russian Journal of Children Hematology and Oncology. 2017;4(4):9–19. Doi: 10.17650/2311-1267-2017-4-4-13-19.

40. Priest J. R. et al. Cerebral metastasis and other central nervous system complications of pleuropulmonary blastoma. Pediatr Blood Cancer. 2007;49(3):266–273. Doi: 10.1002/pbc.20937.

41. Sabbaghian N. et al. Germline DICER1 mutation and associated loss of heterozygosity in a pineoblastoma: Figure 1. J Med Genet. 2012;49(7):417–419. Doi: 10.1136/jmedgenet-2012-100898.

42. de Kock L. et al. An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol. 2020;139(4):689–701. Doi: 10.1007/s00401-019-01997-y.

43. Dornbos D. et al. Review of the Neurological Implications of von Hippel–Lindau Disease. JAMA Neurol. 2018;75(5):620. Doi: 10.1001/jamaneurol.2017.4469.

44. Zagzag D. et al. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000;88(11):2606– 2618.

45. Wizigmann-Voos S. et al. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995;55(6):1358–1364.

46. Sansal I., Sellers W. R. The Biology and Clinical Relevance of the PTEN Tumor Suppressor Pathway. Journal of Clinical Oncology. 2004;22(14):2954–2963. Doi: 10.1200/JCO.2004.02.141.

47. Gorlin R. J. et al. Bannayan-Riley-Ruvalcaba syndrome // Am J Med Genet. 1992;44(3):307–314. Doi: 10.1002/ajmg.1320440309.

48. Pezzolesi M. G. et al. Comparative genomic and functional analyses reveal a novel cis-acting PTEN regulatory element as a highly conserved functional E-box motif deleted in Cowden syndrome. Hum Mol Genet. 2007;16(9):1058–1071. Doi: 10.1093/hmg/ddm053.

49. Bolokhonova М. А. et al. Tumours in children with GorlinGolts syndrome: rare case report. Medical alphabet. 2022;(37):16–19. Doi: 10.33667/2078-5631-2021-37-16-19.

50. Bresler S. C., Padwa B. L., Granter S. R. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome). Head Neck Pathol. 2016;10(2):119–124. Doi: 10.1007/s12105-0160706-9.

51. Palacios-Álvarez I., González-Sarmiento R., FernándezLópez E. Síndrome de Gorlin. Actas Dermosifiliogr. 2018;109(3):207–217. Doi: 10.1016/j.ad.2017.07.018.

52. Al-Jarboua M. N. et al. Gorlin-Goltz Syndrome: A Case Report and Literature Review. Cureus. 2019;11(1):e3849. Doi: 10.7759/cureus.3849.

53. Mikhaylenko D. S. et al. Mutations of the smarcb1 gene in human cancers. / Almanac of Clinical Medicine. 2016;44(5):558–567. Doi: 10.18786/2072-0505-2016-44-5558-567.

54. Sévenet N. et al. Constitutional Mutations of the hSNF5/ INI1 Gene Predispose to a Variety of Cancers. The American Journal of Human Genetics. 1999;65(5):1342–1348. Doi: 10.1086/302639.

55. Baysal B. E. Hereditary paraganglioma targets diverse paraganglia. J Med Genet. 2002;39(9):617–622. Doi: 10.1136/jmg.39.9.617.

56. Neumann H. P. H. Distinct Clinical Features of Paraganglioma Syndromes Associated With SDHB and SDHD Gene Mutations. JAMA. 2004;292(8):943. Doi: 10.1001/jama.292.8.943.

57. Kaufman D. K. et al. A familial syndrome with cutaneous malignant melanoma and cerebral astrocytoma. Neurology. 1993;43(9):1728–1731. Doi: 10.1212/wnl.43.9.1728.

58. Azizi E. et al. Familial cutaneous malignant melanoma and tumors of the nervous system. A hereditary cancer syndrome. Cancer. 1995;76(9): 1571–1578. Doi: 10.1002/1097-0142(19951101)76:9<1571::aidcncr2820760912>3.0.co;2-6.

59. Chan A. K. et al. Familial melanoma-astrocytoma syndrome: synchronous diffuse astrocytoma and pleomorphic xanthoastrocytoma in a patient with germline CDKN2A/B deletion and a significant family history. Clin Neuropathol. Clin Neuropathol. 2017;36(5):213–221. Doi: 10.5414/NP301022.

60. Carbone M. et al. Biological Mechanisms and Clinical Significance of BAP1 Mutations in Human Cancer. Cancer Discov. 2020;10(8):1103–1120. Doi: 10.1158/21598290.CD-19-1220.

61. Popova T. et al. Germline BAP1 Mutations Predispose to Renal Cell Carcinomas // The American Journal of Human Genetics. 2013;92(6):974–980. Doi: 10.1016/j.ajhg.2013.04.012.

62. Deakyne J. S., Mazin A. V. Fanconi anemia: at the Crossroads of DNA repair. Biochemistry (Moscow). 2011;76(1):36–48. Doi: 10.1134/S0006297911010068.

63. Waszak S. M. et al. Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature. 2020;580(7803):396–401. Doi: 10.1038/s41586-020-2164-5.

64. Close P. et al. Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell. 2006;22(4): 521–531. Doi: 10.1016/j.molcel.2006.04.017.

65. Stratakis C. A., Kirschner L. S., Carney J. A. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–4046. Doi: 10.1210/jcem.86.9.7903.

66. Bossis I., Stratakis C. A. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology. 2004;145(12):5452–5458. Doi: 10.1210/en.2004-0900.

67. Bogacheva O. Y., Fomichev V. I. Ataxia-telangiectasia (louis-bar syndrome): report of a case. Juvenis Scientia. 2019;(11–12):7–10. Doi: 10.32415/jscientia.2019.11-12.02.

68. Rothblum-Oviatt C. et al. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159. Doi: 10.1186/s13023016-0543-7.

69. Nisichenko O. A., Minulin I. R., Semenova V. V. Diagnosis of Nijmigen syndrome in a patient with rhabdomyosarcoma at the stage of rehabilitation. Pediatric Bulletin of the Southern Urals. 2021;(2):144–150. (In Russ.)]. Doi: 10.34710/Chel.2021.50.65.014. EDN: JACUYD.

70. Yuan J., Chen J. MRE11-RAD50-NBS1 Complex Dictates DNA Repair Independent of H2AX. Journal of Biological Chemistry. 2010;285(2):1097–1104. Doi: 10.1074/jbc.M109.078436.

71. Lamarche B. J., Orazio N. I., Weitzman M. D. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 2010;584(17): 3682–3695. Doi: 10.1016/j.febslet.2010.07.029.

72. Seemanova E. et al. The Slavic NBN Founder Mutation: A Role for Reproductive Fitness?. PLoS One. 2016;11(12):e0167984. Doi: 10.1371/journal.pone.0167984.

73. Resnick I. B. et al. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet. 2003;120A(2):174–179. Doi: 10.1002/ajmg.a.20188.

74. Poddighe D. et al. Postnatal cytomegalovirus infection in an infant with congenital thrombocytopenia: how it can support or mislead the diagnosis of Wiskott-Aldrich syndrome. Infez Med. 2016;24(3):237–240.

75. Sasahara Y. WASP-WIP complex in the molecular pathogenesis of Wiskott-Aldrich syndrome. Pediatrics International. 2016;58(1):4–7. Doi: 10.1111/ped.12819

76. Cunniff C., Bassetti J. A., Ellis N. A. Bloom’s Syndrome: Clinical Spectrum, Molecular Pathogenesis, and Cancer Predisposition. Mol Syndromol. 2017;8(1):4–23. Doi: 10.1159/000452082.

77. Miller R. W., Rubinstein J. H. Tumors in Rubinstein-Taybi syndrome. Am J Med Genet. 1995;56(1):112–115. Doi: 10.1002/ajmg.1320560125.

78. Hennekam R. C. M. Rubinstein-Taybi syndrome. Eur J Hum Genet. 2006;14(9):981–985. Doi: 10.1038/sj.ejhg.5201594.

79. Bartsch O. et al. Inheritance and variable expression in Rubinstein-Taybi syndrome. Am J Med Genet A. 2010;152A(9):2254–2261. Doi: 10.1002/ajmg.a.33598.

80. Hanahan D., Weinberg R. A. The hallmarks of cancer. Cell. Cell. 2000;100(1):57–70. Doi: 10.1016/S00928674(00)81683-9.

81. Brownstein S., de Chadarévian J. P., Little J. M. Trilateral retinoblastoma. Report of two cases. Arch Ophthalmol. Arch Ophthalmol. 1984;102(2):257–262. Doi: 10.1001/ARCHOPHT.1984.01040030207028.

82. Kivelä T. Trilateral retinoblastoma: a meta-analysis of hereditary retinoblastoma associated with primary ectopic intracranial retinoblastoma // J Clin Oncol. J Clin Oncol. 1999;17(6):1829–1837. Doi: 10.1200/JCO.1999.17.6.1829.

83. Bomken S. et al. Current Understanding and Future Research Priorities in Malignancy Associated With Inborn Errors of Immunity and DNA Repair Disorders: The Perspective of an Interdisciplinary Working Group. Frontiers in immunology. 2018;(9):2912. Doi: 10.3389/fimmu.2018.02912.

84. Suspitsin E. N., Imyanitov E. N. Hereditary Conditions Associated with Elevated Cancer Risk in Childhood // Biochemistry (Moscow). 2023;(7(88)):880–891. Doi: 10.1134/S0006297923070039.

85. Mortaz E. et al. Cancers Related to Immunodeficiencies: Update and Perspectives. Frontiers in immunology. 2016;(7):365. Doi: 10.3389/fimmu.2016.00365.

86. Iourov I. Y., Gerasimov A. P., Zelenova M. A. et al. Cytogenomic epileptology. Mol Cytogenet. 2023;16(1):1. Doi: 10.1186/s13039-022-00634-w. PMID: 36600272; PMCID: PMC9814426.


Review

For citations:


Voinov N.E., Ulitin A.Yu., Gerasimov A.P., Kukanov K.K. Primary multiple tumors of the nervous system of different histological types in the structure of hereditary tumor syndromes. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2024;16(2):150-164. (In Russ.) https://doi.org/10.56618/2071-2693_2024_16_2_150. EDN: JSXZVH

Views: 56


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)