Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Dynamics of the optic nerve sheaths diameter in patients with severe traumatic brain injury and decompressive craniotomy

https://doi.org/10.56618/2071-2693_2024_16_3_75

EDN: JCJSFN

Abstract

INTRODUCTION. Correlation between the optic nerve sheath diameter (ONSD) and the intracranial pressure (ICP) in the acute period of severe traumatic brain injury has been confirmed in numerous publications by foreign and Russian authors. Evaluation of ONSD in patients with cerebral edema and suspected intracranial hypertension (ICH) is possible using neuroimaging (CT, MRI) and ultrasound diagnostic methods (US). The use of ONSD data in patients with severe traumatic brain injury may be of diagnostic and prognostic value in the analysis of therapeutic and surgical methods effectiveness, including decompressive craniectomy (DCT).

AIM. To evaluate changing in the ONSD on computed tomography (CT) in patients with severe traumatic brain injury after decompression craniotomy (DCT).

MATERIALS AND METHODS. For the period from 2020 to 2022 on the basis of the N. N. Burdenko National Medical Research Center of Neurosurgery conducted a prospective single-center observational study included 31 patients (7 women and 24 men) with severe (GCS ≤ 8 points) traumatic brain injury (TBI) and invasive ICP monitoring. The final version of the study included 8 patients (3 women and 5 men) with a wide DCT during the first 3 days after the injury. The mean age in this group was 30 [26.3; 53.0]. All patients underwent invasive ICP monitoring and ICP-oriented therapy according to international and Russian recommendations. Analysis of the ONSD dynamics was carried out based on the comparison of the average, maximum, and minimum values of the ONSD before and after decompression.

RESULTS. Significant differences were found in the ONSD in patients with severe TBI before and after decompressive trepanation: decrease in the maximum ONSD from 7.53 to 6.89 mm and decrease in the minimum ONSD from 7.20 to 6.54 mm (p=0.022 in both cases). These results allow us to conclude that changing in the ONSD parameter is affected by the fact of DCT – significantly lower ONSD values and also stabilization of ICP were noted after DCT in 75 % of the observations.

CONCLUSION. The conductedstudy indicates the relationship between significant decrease in the ONSD parameter and the fact of DCT, accompanied by stabilization of ICP, in patients in the acute period of severe TBI.

About the Authors

K. R. Muradyan
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Karina R. MuradyanAnesthesiologist-Resuscitator of the Neuroreanimation Department

16 4th Tverskaya-Yamskaya, Moscow, 125047



A. V. Oshorov
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Andrey V. OshorovDr. of Sci. (Med.), AnesthesiologistResuscitator of the Neuroresuscitation Department, Associate Professor of the Department of Neurosurgery with Neuroscience Courses

16 4th Tverskaya-Yamskaya, Moscow, 125047



A. M. Turkin
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Alexander M. TurkinCand. of Sci. (Med.), Radiologist, Senior Researcher Department of X-ray and Radioisotope Diagnostic Methods

16 4th Tverskaya-Yamskaya, Moscow, 125047



I. A. Savin
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Ivan A. SavinDr. of Sci. (Med.), Anesthesiologist-Resuscitator, Head at the Department of Neuroreanimation , Leading Researcher, Professor at the Department of Neurosurgery with Neuroscience Courses

16 4th Tverskaya-Yamskaya, Moscow, 125047



Yu. V. Strunina
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Yulia V. StruninaLeading Engineer at the Laboratory of Biomedical Informatics and Artificial Intelligence (Institute of Neurosciences and Technologies)

16 4th Tverskaya-Yamskaya, Moscow, 125047



G. V. Danilov
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Gleb V. DanilovCand. of Sci. (Med.), Neurosurgeon, Scientific Secretary, Associate Professor at the Department of Neurosurgery with Neuroscience Courses

16 4th Tverskaya-Yamskaya, Moscow, 125047



A. D. Kravchuk
N. N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Alexander D. KravchukDr. of Sci. (Med.), Professor, Neurosurgeon, Head at the 9th Neurosurgical Department (Traumatic Brain Injury), Leading Researcher, Professor at the Department of Neurosurgery with Neuroscience Courses

Author ID: 58538 

16 4th Tverskaya-Yamskaya, Moscow, 125047



References

1. Carney N., Totten A. M., O’Reilly C., Ullman J.S., Hawryluk G. W., Bell M. J., Bratton S. L., Chesnut R., Harris O. A., Kissoon N., Rubiano A. M., Shutter L., Tasker R. C., Vavilala M. S., Wilberger J., Wright D. W., Ghajar J. Guidelines for the Management of Severe Traumatic Brain Injury. 4th ed. Neurosurgery. 2017;80(1):6–15. Doi: 10.1227/NEU.0000000000001432. PMID: 27654000.

2. Hawryluk G. W. J., Rubiano A. M. et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery. 2020;87(3):427–434. Doi: 10.1093/neuros/nyaa278. PMID: 32761068; PMCID: PMC7426189.

3. Farahvar A., Gerber L. M., Chiu Y. L., Härtl R., Froelich M., Carney N., Ghajar J. Response to intracranial hypertension treatment as a predictor of death in patients with severe traumatic brain injury. J Neurosurg. 2011;114(5):1471–1478. Doi: 10.3171/2010.11.JNS101116. PMID: 21214327.

4. Jiang J. Y., Xu W., Li W. P. et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22(6):623–628. Doi: 10.1089/neu.2005.22.623. PMID: 15941372.

5. Bekerman I., Kimiagar I., Sigal T., Vaiman M. Monitoring of Intracranial Pressure by CT-Defined Optic Nerve Sheath Diameter. J Neuroimaging. 2016;26(3):309–314. Doi: 10.1111/jon.12322. PMID: 26686547

6. Vaiman M., Sigal T., Kimiagar I., Bekerman I. Intracranial Pressure Assessment in Traumatic Head Injury with Hemorrhage Via Optic Nerve Sheath Diameter. J Neurotrauma. 2016;33(23):2147–2153. Doi: 10.1089/neu.2015.4293. PMID: 27048793

7. Sekhon M. S., Griesdale D. E., Robba C., McGlashan N., Needham E., Walland K., Shook A. C., Smielewski P., Czosnyka M., Gupta A. K., Menon D. K. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40(9):1267–1274. Doi: 10.1007/s00134-014-3392-7. PMID: 25034476.

8. Turkin A. M., Oshorov A. V., Pogosbekyan E. L., Smirnov A. S., Dmitrieva A. S. Correlation of intracranial pressure and diameter of the sheath of the optic nerve by computed tomography in severe traumatic brain injury. Voprosy Neirokhirurgii: Zhurnal Imeni N.N. Burdenko. 2017;81(6):81–88. (In Russ.). Doi: doi.org/10.17116/neiro201781681-88.

9. Hutchinson P. J., Kolias A. G., Tajsic T., Adeleye A., Aklilu A. T., Apriawan T., Bajamal A. H., Barthélemy E. J., Devi B. I., Bhat D., Bulters D., Chesnut R., Citerio G., Cooper D. J., Czosnyka M., Edem I., El-Ghandour N. M. F., Figaji A., Fountas K. N., Gallagher C., Hawryluk G. W. J., Iaccarino C., Joseph M., Khan T., Laeke T., Levchenko O., Liu B.., Liu W, Maas A., Manley G. T., Manson P., Mazzeo A. T., Menon D. K., Michael D. B., Muehlschlegel S., Okonkwo D. O., Park K. B., Rosenfeld J. V., Rosseau G., Rubiano A. M., Shabani H. K., Stocchetti N., Timmons S. D., Timofeev I., Uff C., Ullman J. S., Valadka A., Waran V., Wells A., Wilson M. H., Servadei F. Consensus statement from the International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury: Consensus statement. Acta Neurochir (Wien). 2019;161(7):1261–1274. Doi: 10.1007/s00701-019-03936-y. PMID: 31134383; PMCID: PMC6581926.

10. Hutchinson P. J., Kolias A. G., Timofeev I. S. et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med. 2016;375(12):1119–1130. Doi: 10.1056/NEJMoa1605215.

11. Konovalov A. N., Belousova O. B., Pilipenko Iu. V. Decompressive craniotomy in patients with intracranial aneurysmal hemorrhage. Voprosy Neirokhirurgii: Zhurnal Imeni N. N. Burdenko. 2016;80(5):144–150. (In Russ.). Doi: doi.org/10.17116/neiro2016805144-150.

12. Cooper D. J., Rosenfeld J. V., Murray L., Arabi Y. M., Davies A. R., Ponsford J., Seppelt I., Reilly P., Wiegers E., Wolfe R. DECRA Trial Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Patient Outcomes at Twelve Months after Early Decompressive Craniectomy for Diffuse Traumatic Brain Injury in the Randomized DECRA Clinical Trial. J Neurotrauma. 2020;37(5):810–816. Doi: 10.1089/neu.2019.6869. PMID: 32027212; PMCID: PMC7071071.

13. Jinjikhadze R. S., Dreval O. N., Lazarev V. A. Decopressive craniectomy for intracranial hypertension: textbook; SBEI DPO «Russian Medical Academy of Postgraduate Education». Moscow: SBEI DPO RMAPO; 2013. 150 p.

14. Vaiman M., Gottlieb P., Bekerman I. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring. Head Face Med. 2014;(10):32. Doi: 10.1186/1746-160X-10-32. PMID: 25130267; PMCID: PMC4141911.


Review

For citations:


Muradyan K.R., Oshorov A.V., Turkin A.M., Savin I.A., Strunina Yu.V., Danilov G.V., Kravchuk A.D. Dynamics of the optic nerve sheaths diameter in patients with severe traumatic brain injury and decompressive craniotomy. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2024;16(3):75-82. (In Russ.) https://doi.org/10.56618/2071-2693_2024_16_3_75. EDN: JCJSFN

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)