Outcome prediction in patients treated with endovascular thrombectomy for acute stroke
Abstract
BACKGROUND AND PURPOSE: Prognosticating patients following mechanical thrombectomy has proven challenging for clinicians within the last decade. Several scoring paradigms have subsequently been developed with the aim of aiding providers in predicting outcomes in patients status post neuro-intervention for acute ischemic stroke. The purpose of this study is to develop and validate a condensed algorithm to predict outcomes in patients 90 days post thrombectomy for acute ischemic stroke of the proximal anterior circulation.
METHODS: A retrospective chart review of 75 patients who presented to our institution with emergent large vessel occlusion of the anterior proximal circulation was performed. Five independent variables, Age, Initial NIHSS & TICI, Post-Thrombectomy NIHSS & TICI, delta NIHSS, were identified and regressed logistically upon binary outcomes defined by functional status according to the modified Rankin scale. The data was validated using JROCFIT and JLABROC4 programs for fitting receiver operating characteristic curves using the maximum likelihood fit.
RESULTS: A statistically significant relationship was identified in two of the five independent variables analyzed in the study. Post-thrombectomy NIHSS and Age were found to be the strongest independent predictors of functional status at 90 days post-neurointervention for acute ischemic stroke. The data was validated with ROC curves and area under the curve (AUC).
CONCLUSIONS: The binary logistic regression model in our study accurately predicts 90 day outcomes in patients status post mechanical thrombectomy for acute ischemic stroke. Post-thrombectomy NIHSS and age are the only mandatory covariates required to make an accurate prognosis in these patients.
About the Authors
A. DrofaRussian Federation
E. Kouznetsov
Russian Federation
S. Dash
Russian Federation
M. Manchak
Russian Federation
N. Alberto
Russian Federation
G. Sachdeva
Russian Federation
Q. Durrani
Russian Federation
T. Haldis
Russian Federation
M. L. Pospelova
Russian Federation
Saint Petersburg
N. E. Ivanova
Russian Federation
Saint Petersburg
A. S. Lepekhina
Russian Federation
Saint Petersburg
V. V. Zhiltsov
Russian Federation
Saint Petersburg
References
1. Campbell, B.C.V., et al. Endovascular stent thrombectomy: the new standard of care for large vessel ischaemic stroke / B.C.V.Campbell, G. A. Donnan, K. R. Lees, W. Hacke, P. Khatri, M. D. Hill, M. Goyal, et al.// Lancet Neurol. — 2015. — Vol.14, № 8. — P. 846–854.
2. Goyal, M., et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke./M.Goyal, A. M. Demchuk, B. K. Menon, M. Eesa, J. L. Rempel et al.// New England Journal of Medicine. —2015. — Vol.372, № 11. — P. 1019–1030.
3. Volodyuhin M. Y. Intra-arterial reperfusion therapy in patients with acute ischemic stroke / M. Y. Volodyuhin, D. R. Khasanova, T. V. Demin, B. I. Zagidullin, S. G. Musin, M. R. Sharafutdinov // Medical Council. — 2015. — № 10. — P. 4–5.
4. Dudanov I. P. Carotid endarterectomy in acute ischemic stroke/ I. P. Dudanov, V. G. Belinskaya, E. E. Atamanova, K. V. Laptev, N. O. Vasilchenko, E. S. Koblov// Pediatrician. —2011. —Vo l.2, № 3. —P.43–47.
5. Dudanov I. P. Modern approaches to assessing the efficiency of carotid endarterectomy in the acute period of ischemic stroke/ I. P. Dudanov, I. V. Stafeeva, I.AVoznyuk //RMJ. Neurology. —2017. —№ 13. —P. 945–949.
6. Wang, W.Y., et al. The Prognostic Value of the iScore, the PLAN Score, and the ASTRAL Score in Acute Ischemic Stroke / W. Y. Wang, W. W. Sang, D. Jin, S. M. Yan et al.// J Stroke Cerebrovasc Dis. — 2017. — Vol.26, № 6. — P. 1233–1238.
7. Saposnik G, Guzik AK, Reeves M, et al.; Stroke Prognostication using Age and NIH StrokeScale: SPAN-100. Neurology. 2013;80:21–28. https://doi.org/10.1212/WNL.0b013e31827b1ace
8. Dekker L, Geraedts VJ, Hund H, et al. Importance of Reperfusion Status after Intra-Arterial Thrombectomy for Prediction of Outcome in Anterior Circulation Large Vessel Stroke. Intervent Neurol. 2018;7:137–147. https://doi.org/10.1159/000486246
9. Lachenbruch PA, Mickey MR. Estimation of Error Rates in Discriminant Analysis.Technometrics. 1968;10:1–11.
10. Berkhemer OA, Fransen PS, Beumer D, et al.; A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. https://doi.org/10.1056/NEJMoa1411587.
11. Le Bouc R, Clarençon F, Meseguer E, et al.; Efficacy of Endovascular Therapy in Acute Ischemic Stroke Depends on Age and Clinical Severity. Stroke. 2018;49:1686–1694. https://doi.org/10.1161/STROKEAHA.117.020511
12. Almekhlafi MA, Davalos A, Bonafe A, et al. Impact of age and baseline NIHSS scores on clinical outcomes in the mechanical thrombectomy using solitaire FR in acute ischemic stroke study. AJNR Am J Neuroradiol. 2014;35:1337–1340. https://doi.org/10.3174/ajnr.A3855.
13. Venema E, Mulder MJHL, Roozenbeek B, et al. Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials; BMJ. 2017;357: j1710. https://doi.org/10.1136/bmj.j1710.
14. Nogueira RG, Jadhav AP, Haussen DC, et al.; Thrombectomy 6 to 24 hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378:11–21. https://doi.org/10.1056/NEJMoa1706442
15. Albers GW, Marks MP, Kemp S, et al.; Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N Engl J Med. 2018;378:708–718. https://doi.org/10.1056/NEJMoa1713973
Review
For citations:
Drofa A., Kouznetsov E., Dash S., Manchak M., Alberto N., Sachdeva G., Durrani Q., Haldis T., Pospelova M.L., Ivanova N.E., Lepekhina A.S., Zhiltsov V.V. Outcome prediction in patients treated with endovascular thrombectomy for acute stroke. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2019;11(4):25-29.