Directions of possible use of graphene in neurology and neurosurgery
https://doi.org/10.56618/20712693_2022_14_3_140
Abstract
Currently, there is a widespread introduction into clinical practice of innovative techniques using nanotechnology. One of the promising materials of scientific and practical interest for medical science is graphene, an allotropic modification of carbon with a number of specific physical properties. We have analyzed the results of research on this problem. The information available in the literature indicates high prospects for its use in neuroscience. The main directions of graphene introduction into neurology and neurosurgery have been established. The development of technological techniques using graphene will contribute to the emergence of new effective methods of diagnosis and therapy, qualitatively increasing the level of management of patients with diseases and injuries of the nervous system.
Keywords
About the Authors
S. V. VorobevRussian Federation
Vorobev Sergej Vladimirovich
Akkuratova st., 2, Saint-Petersburg, 197341; Politekhnicheskaya st., 26, Saint Petersburg, 194021; Litovskaya st. 2, Saint Petersburg, 194100
I. K. Ternovyh
Russian Federation
Ternovyh Ivan Konstantinovich
Akkuratova st., 2, Saint-Petersburg, 197341; Politekhnicheskaya st., 26, Saint Petersburg, 194021
А. А. Lebedev
Russian Federation
Lebedev Aleksandr Aleksandrovich
Politekhnicheskaya st., 26, Saint Petersburg, 194021
A. N. Smirnov
Russian Federation
Smirnov Aleksandr Nikolaevich
Politekhnicheskaya st., 26, Saint Petersburg, 194021
A. S. Usikov
Russian Federation
Usikov Aleksandr Sergeevich
Politekhnicheskaya st., 26, Saint Petersburg, 194021; Engels Avenue, 27/5A, Saint Petersburg, 194156
S. P. Lebedev
Russian Federation
Lebedev Sergej Petrovich
Politekhnicheskaya st., 26, Saint Petersburg, 194021
References
1. Drowart J., De Maria G., Inghram M. G. Thermodynamic Study of SiC Utilizing a Mass Spectrometer. J. Chem. Phys. 1958;29:1015–1021. https://doi.org/10.1063/1.1744646
2. Lebedev S. P., Amel’chuk G., Eliseyev I. A., Nikitina I. P., Dementev P. A., Zubov A. V., Lebedev A. A. Comparison of graphene films grown on 6h-sic and 4h-sic substrates. Fullerenes, Nanotubes and Carbon Nanostructures. 2020;28(4): 321–324. https://doi.org/10.1080/1536383X.2019.1697684
3. Давыдов В.Ю., Усачёв Д.Ю., Лебедев С.П., Смирнов А.Н., Левицкий В.С., Елисеев И.А., Алексеев П.А., Дунаевский М.С., Вилков О.Ю., Рыбкин А.Г., Лебедев А.А. Исследование кристаллической и электронной структуры графеновых пленок, выращенных на 6h-sic (0001) Физика и техника полупроводников. 2017;(51/8):1116–1124. https://doi.org/10.21883/FTP.2017.08.44800.8559.
4. Vorobev S. V., Yanishevskij S.N., Emelin A. Yu., Lebedev A. A., Lebedev S. P., Makarov Yu.N., Usikov A. S., Klotchenko S. A., Vasin A. V. Prospects for the use of graphene-based biological sensors in the early diagnosis of Alzheimer's disease (literature review). Klinicheskaya laboratornaya diagnostika 2022;67(1):5–12. (In Russ.)
5. Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C., Hobza P., Zboril R., Kim K.S. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012;112:6156–6214. https://doi.org/10.1021/cr3000412.
6. Tehrani Z., Burwell G., Mohd Azmi M. A., Castaing A., Rickman R., Almarashi J., Dunstan P., Miran Beigi A., Doak S.H., Guy O. J. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials. 2014;1(025004):1–19. https://doi.org/10.1088/2053–1583/1/2/025004
7. Lebedev A. A., Davydov V. Yu., Novikov S. N., Litvin D. P., Makarov Yu.N., Klimovich V. B., Samojlovich M. P. Graphene-based biosensors. Pis’ma v zhurnal tekhnicheskoj fiziki. 2016;42(14):28–35. (In Russ.)
8. Smith A. D., Elgammal K., Niklaus F., Delin A., Fischer A.C., Vaziri S., Forsberg F., Råsander M., Hugosson H., Bergqvist L., Schröder S., Kataria S., Östlinga M., Lemme M.C., Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale. 2015;7:19099. https://doi.org/10.1039/C5NR06038A
9. Lebedev S., Usikov A., Novikov S., Shabunina E., Schmidt N., Barash I., Roenkov A., Lebedev A., Makarov Y., Graphene/SiC functionalization for blood type sensing applications. Materials Science Forum. 2018;924:909. https://doi.org/3.4028/www.scientific.net/MSF.924.909
10. Iannazzo D., Espro C., Celesti C., Ferlazzo A., Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel). 2021;13(13):3194. https://doi.org/10.3390/cancers13133194
11. Chen S. L., Chen C. Y., Hsieh J.C., Yu Z. Y., Cheng S. J., Hsieh K. Y., Yang J. W., Kumar P. V., Lin S.F., Chen G. Y. Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis. Nanomaterials (Basel). 2019;9(12):1725. https://doi.org/10.3390/nano9121725
12. Safarzadeh M., Suhail A., Sethi J., Sattar A., Jenkins D., Pan G. A Label-Free DNA-Immunosensor Based on Aminated rGO Electrode for the Quantification of DNA Methylation. Nanomaterials (Basel). 2021;11(4):985. https://doi.org/10.3390/nano11040985
13. Liu X., Lin L. Y., Tseng F. Y., Tan Y.C., Li J., Feng L., Song L., Lai C. F., Li X., He J. H., Sakthivel R., Chung R. J. Label-free electrochemical immunosensor based on gold nanoparticle/polyethyleneimine/reduced graphene oxide nanocomposites for the ultrasensitive detection of cancer biomarker matrix metalloproteinase 1. Analyst. 2021;146(12):4066–4079. https://doi.org/10.1039/d1an00537e
14. Yu D., Yin Q., Wang J., Yang J., Chen Z., Gao Z., Huang Q., Li S. SERS-Based Immunoassay Enhanced with Silver Probe for Selective Separation and Detection of Alzheimer’s Disease Biomarkers. Int J Nanomedicine. 2021;16:1901–1911. https://doi.org/10.2147/IJN.S293042
15. Dey J., Roberts A., Mahari S., Gandhi S., Tripathi P. P. Electrochemical Detection of Alzheimer's Disease Biomarker, β-Secretase Enzyme (BACE 1), With One-Step Synthesized Reduced Graphene Oxide. Front Bioeng Biotechnol. 2022;10:873811. https://doi.org/10.3389/fbioe.2022.873811
16. Sun L., Zhong Y., Gui J., Wang X., Zhuang X., Weng J. A hydrogel biosensor for high selective and sensitive detection of amyloidbeta oligomers. Int J Nanomedicine. 2018;13:843–856. https://doi.org/10.2147/IJN.S152163
17. Zhu D., Liu B., Wei G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors (Basel). 2021;11(8):259. https://doi.org/10.3390/bios11080259
18. Park D., Lee D., Kim H. J., Yoon D. S., Hwang K. S. Scalable Functionalization of Polyaniline-Grafted rGO Field-Effect Transistors for a Highly Sensitive Enzymatic Acetylcholine Biosensor. Biosensors (Basel). 2022;12(5):279. https://doi.org/10.3390/bios12050279
19. Nichols J. W., Bae Y.H. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012;7(6):606–618. https://doi.org/10.1016/j.nantod.2012.10.010
20. Patel S.C., Lee S., Lalwani G., Suhrland C., Chowdhury SM, Sitharaman B. Graphene-based platforms for cancer therapeutics. Ther Deliv. 2016;7(2):101–16. https://doi.org/10.4155/tde.15.93
21. Moore T. L., Podilakrishna R., Rao A., Alexis F. Systemic administration of polymer-coated nano-graphene to deliver drugs to glioblastoma. Part. and Part. Syst. Char. 2014;31(8):886–894. 1 https://doi.org/0.1002/ppsc.201300379
22. Kutwin M., Sosnowska M. E., Strojny-Cieślak B., Jaworski S., Trzaskowski M., Wierzbicki M., Chwalibog A., Sawosz E. MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells. Molecules. 2021;26(19):5804. https://doi.org/10.3390/molecules26195804
23. Campbell E., Hasan M.T., Pho C., Callaghan K., Akkaraju G. R., Naumov A. V. Graphene Oxide as a Multifunctional Platform for Intracellular Delivery, Imaging, and Cancer Sensing. Sci Rep. 2019;9(1):416. https://doi.org/10.1038/s41598018366174
24. Perini G., Palmieri V., Ciasca G., De Spirito M., Papi M. Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int J Mol Sci. 2020;21(10):3712. https://doi.org/10.3390/ijms21103712
25. Ren Y., Miao C., Tang L., Liu Y., Ni P., Gong Y., Li H., Chen F., Feng S. Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced ChemoPhotothermal Therapy of Glioma. Pharmaceuticals (Basel). 2022;15(2):157. https://doi.org/10.3390/ph15020157
26. Li M., Yang X., Ren J., Qu K., Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater. 2012;24(13):1722–8. https://doi.org/10.1002/adma.201104864
27. Park S. Y., Park J., Sim S.H., Sung M. G., Kim K.S., Hong B.H., Hong S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011;23(36): H263–7. https://doi.org/10.1002/adma.201101503
28. Li N., Zhang X., Song Q., Su R., Zhang Q., Kong T., Liu L., Jin G., Tang M., Cheng G. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials. 2011;32(35):9374–9382, https://doi.org/10.1016/j.biomaterials.2011.08.065
29. Bei H. P., Yang Y., Zhang Q., Tian Y., Luo X., Yang M., Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules. 2019;24(4):658. https://doi.org/10.3390/molecules24040658
30. Feng Z. Q., Wang T., Zhao B., Li J., Jin L. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development. Adv Mater. 2015;27(41):6462–8. https://doi.org/10.1002/adma.201503319
31. Jakus A. E., Secor E.B., Rutz A. L., Jordan S. W., Hersam M.C., Shah R.N. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano. 2015;9(4):4636–48. https://doi.org/10.1021/acsnano.5b01179
Review
For citations:
Vorobev S.V., Ternovyh I.K., Lebedev А.А., Smirnov A.N., Usikov A.S., Lebedev S.P. Directions of possible use of graphene in neurology and neurosurgery. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(3):140-145. (In Russ.) https://doi.org/10.56618/20712693_2022_14_3_140