Bipolar and quadripolar transcranial electrical stimulation: a comparative characteristic
Abstract
One of the key methods for assessing the state of the pyramidal system is transcranial electrical stimulation (TES). The voltage level used in TES (from 200 V to 800 V) determines the inevitable inconvenience during operation. An alternative method that can significantly reduce the intensity of stimulation is quadripolar transcranial electrical stimulation (quad-TES).
THE PURPOSE OF THE STUDY: to give a comparative description of bipolar and quadripolar TES in the intraoperative assessment of the state of the corticospinal tract during the removal of neoplasms in the lower spinal cord.
MATERIALS AND METHOD S . The study included 15 patients with intradural extramedullary tumors of the spinal cord at the level of Th11-S 2 vertebrae. The minimum intensity of stimulation was assessed to achieve a stable motor response from target muscles during TES (bipolar TES and four variants of quadro-TES). The power of the m-wave was compared for different montages. R ESULTS . The average age of the patients was 59.3 ± 10.0 years. In bipolar TES (C 3-C 4), the stimulus intensity was 99 ± 41.6, V. With quadro-TES: C 3/C 1-C 4/C 2–64.0 ± 30, V (p < 0.001); m3/ m1- m2/ m4–59.3 ± 25.6, V (p < 0.001); C 3/ m1-C 4/m2–52.7 ± 20.2, V (p < 0.001); m3/C 1- m4/C 2–52.0 ± 22.2, V (p < 0.001). With bipolar TES, the highest power of the m-wave was in 1 patient out of 15 (6.67 %). With quadro-TES, 14 out of 15 patients had the highest m-wave power (93.3 %).
CONCLUSION. To achieve a stable motor response from target muscles using the quadro-TES technique we need a lower stimulation intensity than with bipolar TES. When using the quadro-TES method, the optimal ratio of the intensity of the stimulus and the power of the m-wave is provided with diagonal mounting m3/C 1- m4/C 2.
Keywords
About the Authors
D. E. MalyshokRussian Federation
Saint Petersburg
A. Y. Orlov
Russian Federation
Saint Petersburg
A. V. Kudzuev
Russian Federation
Saint Petersburg
M. V. Aleksandrov
Russian Federation
Saint Petersburg
References
1. MacDonald, D. B. Intraoperative motor evoked potential monitoring: overview and update. Journal of clinical monitoring and computing. 2006; 20 (5): 347–377. PM ID: 16832580 doi:10.1007/s10877‑006‑9033‑0
2. Legatt, A. D., Emerson, R. G., Epstein, C. M., MacDonald, D. B., Deletis, V., Bravo, R. J., & López, J. R. ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. Journal of Clinical Neurophysiology. 2016; 33 (1): 42–50. PM ID: 26756258 doi: 10.1097/WNP.0000000000000253
3. Aleksandrov MV , Chikurov AA, Toporkova OA et. al.; Neurophysiological intraoperative monitoring in neurosurgery: guide –2nd ed. / Еdited by Alexandrov MV — 2019. P 160. (In R ussian)
4. Overzet K., Jahangiri F. R ., Funk R. Bulbocavernosus reflex monitoring during intramedullary conus tumor surgery. Cureus. 2020; 12 (3): e7233. PM ID: 32280574. doi: 10.7759/cureus.7233
5. Cohen, B., & Lima, E. O‑ 10 Minimizing Body Movements from Motor Evoked Potential Testing Using LQP -TceMEP Methodology. Clinical Neurophysiology. 2019; 130 (7); e24. doi: 10.1016/j.clinph.2019.04.326
6. Lima, E. S 119. Low threshold Linked Quadri-Polar (LQP )-TceMEP during left middle cerebral artery aneurysm clipping: A case report. Clinical Neurophysiology. 2018; 129: e186. doi:10.1016/j.clinph.2018.04.479
7. Schwartz, S. L., Kale, E. B., Madden, D., & Husain, A. M. “Quadripolar” Transcranial Electrical Stimulation for Motor Evoked Potentials. Journal of Clinical Neurophysiology. 2022; 39 (1): 92–97. PM ID: 32639253 doi: 10.1097/WNP.00000000000000751
8. Ruschel L. G., Aragão A., de Oliveira M . F., Milano J . B., Neto M . C., Ramina R. et al. Correlation of intraoperative neurophysiological parameters and outcomes in patients with intramedullary tumors. Asian Journal of Neurosurgery. 2021; 16 (2): 243–248. PM ID: 34268146. doi: 10.4103/ajns.AJNS_234_20
9. Lee S. Cho D . C., Rhim S. C., Lee B. J ., Hong S. H., Koo Y . S., Park J . H. Intraoperative monitoring for cauda equina tumors: surgical outcomes and neurophysiological data accrued over 10 years. Neurospine. 2021; 18 (2): 281–289. PM ID: 34218610. doi: 10.14245/ns.2040660.330
10. Macdonald, D. B., Skinner, S., Shils, J., & Yingling, C. Intraoperative motor evoked potential monitoring–a position statement by the American Society of Neurophysiological Monitoring. Clinical Neurophysiology. 2013; 124 (12): 2291–2316. doi: 10.1016/j.clinph.2013.07.025
11. Holdefer, R. N., Sadleir, R., & Russell, M. J . P redicted current densities in the brain during transcranial electrical stimulation. Clinical neurophysiology. 2006; 117 (6): 1388–1397. doi: 10.1016/j.clinph.2006.02.020
12. Toporkova O . A., Alexandrov M . V . Integral assessment of the parameters of multipulse transcranial electrical stimulation. «Regional Informatics and Information Security». Collection of works. 2020; 9: 5–8. (In R ussian)] https://www.elibrary.ru/item.asp?id=48027466
Review
For citations:
Malyshok D.E., Orlov A.Y., Kudzuev A.V., Aleksandrov M.V. Bipolar and quadripolar transcranial electrical stimulation: a comparative characteristic. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(1-2):67-72. (In Russ.)