Corticobulbar motor evoked potentials in brainstem and 4-th ventricle surgery (a case report and literature review)
https://doi.org/10.56618/20712693_2022_14_4_117
Abstract
In the surgical treatment of fossa posterior neoplasms, especially when they are localized in the brainstem and in the fourth ventricle, the use of intraoperative neurophysiologic monitoring is an obligatory tool for such operations. Corticobulbar motor evoked potentials allow to assess the functional state of the caudal group of cranial nerves in real-time. This article discusses the possibilities of this method in neurosurgery and shows a clinical observation with the use of corticobulbar motor evoked potentials during surgery.
About the Authors
K. N. LaptevaRussian Federation
Kristina N. Lapteva.
4-ya Tverskaya-Yamskaya Str., Moscow, 125047
R. A. Sufianov
Russian Federation
Rinat A. Sufianov.
4-ya Tverskaya-Yamskaya Str., Moscow, 125047
A. A. Ogurtsova
Russian Federation
Anna A. Ogurtsova.
4-ya Tverskaya-Yamskaya Str., Moscow, 125047
D. I. Pitskhelauri
Russian Federation
David I. Pitskhelauri.
4-ya Tverskaya-Yamskaya Str., Moscow, 125047
V. V. Podlepich
Russian Federation
Vitalij V. Podlepich.
4-ya Tverskaya-Yamskaya Str., Moscow, 125047
References
1. Ulitin AY u, Aleksandrov MV, Malyshev SM, Kostenko IA, Toporkova OA , Tastanbekov MM , Sebelev KI, Safarov BI. Effectiveness of intraoperative motor mapping during resection of rolandic brain tumors. The Russian Neurosurgical Journal named after prof. A. L . Polenov. 2017;9(1):57–62. (In Russ.). https://www.elibrary.ru/item.asp?id=41260941
2. Sala F, Coppola A, Tramontano V. Intraoperative neurophysiology in posterior fossa tumor surgery in children. Child’s nervous system. 2015;31(10):1791–1806. https://doi.org/10.1007/s00381‑015‑2893‑1
3. Kukanov KK, Tastanbekov MM , Olyushin VE, Pustovoy SV. The foramen magnum meningiomas: immediate and long-terms results. The Russian Neurosurgical Journal named after prof. A. L . P olenov. 2017;9(1):36–42. (In Russ.). eLIBRARY ID: 41260938 EDN: REBCQI https://www.elibrary.ru/item.asp?id=41260938
4. Procaccio F, Gambin R, Leonardo G. Complications of brain stem surgery: Prevention and treatment. Operative Techniques in Neurosurgery. 2000;3(2).155–157. https://doi.org/10.1053/oy.2000.6568
5. Deletis V, Fernández-Conejero I. Intraoperative Monitoring and Mapping of the Functional Integrity of the Brainstem. Journal of clinical neurology. 2016;12(3):262–273. https://doi.org/10.3988/jcn.2016.12.3.262
6. Dong C, Macdonald D, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clinical neurophysiology. 2005;116(3):588–296. https://doi.org/10.1016/j.clinph.2004.09.013
7. Deletis V, Fernandez-Conejero I, Ulkatan S, Costantino P. Methodology for intraoperatively eliciting motor evoked potentials in the vocal muscles by electrical stimulation of the corticobulbar tract. Clinical neurophysiology. 2009;120(2):336–341. https://doi.org/10.1016/j.clinph.2008.11.013
8. Goto T, Muraoka H, Kodama K, Hara Y, Yako T, Hongo K. Intraoperative Monitoring of Motor Evoked Potential for the Facial Nerve Using a Cranial Peg-Screw Electrode and a «Threshold-level» Stimulation Method. Skull Base. 2010;20(6):429–234. https://doi.org/10.1055/s‑0030–1261270
9. Morota N, Ihara S, Deletis V. Intraoperative neurophysiology for surgery in and around the brainstem: role of brainstem mapping and corticobulbar tract motor-evoked potential monitoring. Child’s nervous system. 2010;26(4):513–21. https://doi.org/10.1007/s00381‑009‑1080‑7
10. Acioly M, Liebsch M, Carvalho C, Gharabaghi A, Tatagiba M. Transcranial electrocortical stimulation to monitor the facial nerve motor function during cerebellopontine angle surgery. Neurosurgery. 2010;66(6):354–361. https://doi.org/10.1227/01.neu.0000369654.41677.b7
11. Kim K, Cho C, Bang M, Shin H, Phi J, Kim S. Intraoperative Neurophysiological Monitoring: A Review of Techniques Used for Brain Tumor Surgery in Children. Journal of Korean Neurosurgical Society. 2018;61(3):363–375. https://doi.org/10.3340/jkns.2018.0078
12. Tellez M, Ulkatan J, Urriza B, Arranz-Arranz B, Deletis V. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring. Clinical neurophysiology. 2016;127(2):1710–1716. https://doi.org/10.1016/j.clinph.2015.07.042
13. Ito E, Ichikawa M, Itakura T, Ando H, Matsumoto Y, Oda K, Sato T, Watanabe T, Sakuma J, Saito K. M otor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries. Journal of neurosurgery. 2013;118(1):195–201. https://doi.org/10.3171/2012.10.JNS12383
14. Kullmann M, Tatagiba M, Liebsch M, Feigl G. E valuation of the Predictive Value of Intraoperative Changes in Motor-Evoked Potentials of Caudal Cranial Nerves for the Postoperative Functional Outcome. World neurosurgery. 2016;95:329–334. https://doi.org/10.1016/j.wneu.2016.07.078
15. Kim D, Jo S, Youn M, Hyun S, Kim K, Jahng T, Kim H, Park K. Corticobulbar motor evoked potentials from tongue muscles used as a control in cervical spinal surgery. Clinical neurophysiology practice. 2017;2:124–129. https://doi.org/10.1016/j.cnp.2017.05.003
Review
For citations:
Lapteva K.N., Sufianov R.A., Ogurtsova A.A., Pitskhelauri D.I., Podlepich V.V. Corticobulbar motor evoked potentials in brainstem and 4-th ventricle surgery (a case report and literature review). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2022;14(4):117-121. (In Russ.) https://doi.org/10.56618/20712693_2022_14_4_117