Thermophysical modeling and results of an experimental study of laser hyperthermia in gliomas
https://doi.org/10.56618/2071-2693_2023_15_3_97
Abstract
SUMMARY. Recurrent and initially inoperable small gliomas can be effectively coagulated by minimally invasive laser hyperthermia. The article presents the results of temperature calculations and morphological effects of laser hyperthermia on rat glioma, which are the basis of the method of minimally invasive laser hyperthermia (MILH).
MATERIAL AND METHODS. To predict the spread of heat in gliomas during laser hyperthermia, computer simulation of the process was carried out. Real-time thermometry of glioma hyperthermia was carried out in the experiment. Morphological studies of the area of laser hyperthermia were made on the 7th day after irradiation.
RESULTS. Mathematical modeling predicted the temperature at the fiber tip in diffuse glioma (DG) to reach 194 °C (blue line) and in glioblastoma (GB) to 108 °C (orange line) by the end of irradiation. The estimated size of coagulative necrosis reaches 10.9 mm in HD and 8.7 mm in DG. A study on rat subcutaneous glioma showed that after 30 seconds at 3 mm from the tip of the fiber, the temperature reaches coagulation, at a maximum of 67.4 °C by 60 seconds. Morphologically, the zone of hyperthermia on the 7th day is represented by necrosis, with clear boundaries between the zone of necrosis and the surrounding tissue.
CONCLUSION. Laser hyperthermia with a continuous radiation power not exceeding 2 W, an exposure of 60 seconds, makes it possible to achieve irreversible changes in the tissue. Coagulative necrosis occurs within acceptable temperatures for coagulation.
About the Authors
O. V. OstreikoRussian Federation
Ostreiko Oleg Vikentievich
St. Petersburg, 197022
G. Yu. Yukina
Russian Federation
Yukina Galina Yurievna
St. Petersburg, 197022
E. G. Sukhorukova
Russian Federation
Sukhorukova Elena Gennadievna
St. Petersburg, 197022
N. V. Mikhailova
Russian Federation
Mikhaylova Natalya Vladimirovna
St. Petersburg, 197022
N. M. Yudintseva
Russian Federation
Yudintceva Natalia Mikhailovna
St. Petersburg, 194064
M. A. Shevtsov
Russian Federation
Shevtsov Maxim Alexseevich
St. Petersburg, 194064
A. V. Belikov
Russian Federation
Belikov Andrey Vyacheslavovich
St. Petersburg, 197022
St. Petersburg, 197101
Yu. V. Fedorova
Russian Federation
St. Petersburg, 197101
References
1. Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRU S Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro Oncol. 2020;22(2): iv1-iv96. https://doi.org/10.1093/neuonc/noaa200.
2. Stupp R, Mason WP, van den Bent MJ, Weller M., Fisher B., Taphoorn M.J.B., Belanger K., Brandes A. A., Marosi C., Bogdahn U., Curschmann J., Janzer R. C., Ludwin S. K., Gorlia T., Allgeier A., Lacombe D., Cairncross J. G., Eisenhauer E., Mirimanoff R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl. J. M ed. 2005;352(10):987–996. https://doi.org/10.1056/NEJM oa043330.
3. Mohammadi A.M., Hawasli A. H., Rodriguez A., Schroeder J . L., Laxton A. W., Elson P., Tatter S. B., Barnett G. H., Leuthardt E. C. The role of laser interstitial thermal therapy in enhancing progressionfree survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Medicine. 2014;3(4):971–979. https://doi.org/10.1002/cam4.266.
4. Ostreyko O. V., Mojaev S. V., Matzko D. E., Shevtsov M. A., Pojivil A. S. Histological characteristics of the brain region exposed to laser thermodestruction. Scientific notes of the First St. Petersburg State Medical University im. akad. I. P. Pavlova. 2012;12(1):80–82. eLIBRARY ID: 22019859 EDN: SNWJON (In Russ).
5. Lippert B. M., Teymoortash A., Folz B. J., Werner J. A. Coagulation and temperature distribution in Nd: YA G interstitial laser thermotherapy: an in vitro animal study. Lasers Med. Sci. 2003;18:19–24. https://doi.org/10.1007/s10103‑002‑0246‑2.
6. Sundqvist J., Kaplan A . F.H., Shachaf L., Kong C. Analytical heat conduction modelling for shaped laser beams. J. of Materials Proces. Techn. 2017:48–54. http://dx.doi.org/10.1016/j.jmatprotec.2017.04.011
7. Yakunin A.N, Avetisyan Y. A., Tuchin V. V. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles. Journal of Biomedical Optics. 2015;20(5):05103(1–9). https://doi.org/10.1117/1.JBO.20.5.051030
8. Jiang S. C., Zhang X. X. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis // Lasers in Medical Science. 2005;20(3):122–131. https://doi.org/10.1007/s10103‑005‑0359‑5.
9. Genina E.A., Bashkatov A. N., Tuchina D. K., Dyachenko (Timoshina) P.A., Navolokin N., Shirokov A., Khorovodov A., Terskov A., Klimova M., Mamedova A., Blokhina I., Agranovich I., Zinchenko E., Semyachkina-Glushkovskaya O.V., Tuchin V. V. Optical properties of brain tissues at the different stages of glioma development in rats: pilot study // Biomed. Opt. Express.- 2019. - Vol.10(10/1). — P. 5182–5197. DO I: 10.1364/BOE.10.005182
10. Honda N., Ishii K., Kajimoto Y., Kuroiwa T., Awazu K. Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with 5-aminolevulinic acid // J. Biomed. Opt.— 2018. — Vol.23(7), 075006. https://doi.org/10.1117/1.JBO.23.7.075006
11. Zhang Y. P., Liang X., Wang Z., Ge X. S. A method of determining the thermophysical properties and calorific intensity of the organ or tissue of a living body // Inter. journal of thermophysics.— 2000. — Vol. 21.— №1. — P. 207–215. DOI: 10.1023/A:1006669207551.
12. Mohammadi A., Bianchi L., Asadi S., Saccomandi P. Measurement of ex-vivo liver, brain and pancreas thermal properties as function of temperature. Sensors (Basel). 2021;21(12):4236. https://doi.org/10.3390/s21124236.
13. URL: https://www.edmundoptics.com
14. Ostreiko O.V., Galkin M. A., Papayan G. V., Grishacheva T. G., Petrishchev N. N. Application of biophantomes to evaluate the thermal effects of laser radiation with wavelengths of 970 nm and 1560 nm under different exposure modes. Biomedical. Photonics. 2022;11(2):12–22. https://doi.org/10.24931/2413‑9432‑2022‑11‑2‑12‑22.
15. Ostreiko O. V., Mojaev S. V., Shevtsov M. A., Pojivil A. S. Experimental interstitial brain thermodestruction by laser radiation of infrared spectrum as a minimally invasive method of stereotactic target ablation. Scientific notes of the First St. P etersburg State Medical University im. akad. I. P . Pavlova. 2012;19(4):77–80. eLIBRARY ID: 22028767 EDN: SOBLIR (in Russ).
16. Ostreiko O.V., Cherebillo V. Yu., Kholyavin A. I., Gavrilov G. V., Gusev A. A., Vekovishcheva O. Yu. Minimally invasive laser hyperthermia in the complex treatment of local prolonged glioblastoma growth (pilot study). Ross. the neurosurgeon. The journal named after prof. A. L. Polenov. 2023;2 (article in the editorial office of the journal).
17. Leuthardt EC, Duan C, Kim MJ, Campian JL, Kim AH, Miller-Thomas MM , Shimony J. S., Tranet D.D. Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PL oS ONE. 2016;11(2): e0148613. https://doi.org/10.1371/journal.pone.0148613
18. Man J., Shoemake J. D., Ma T., Rizzo A. E., Godley A. R., Wu Q., Mohammadi A. M., Bao Sh., Rich J. N., Yu J. S. Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res. 2015;75(8):1760–1769. https://doi.org/10.1158/0008–5472.CAN‑14–3621.
Review
For citations:
Ostreiko O.V., Yukina G.Yu., Sukhorukova E.G., Mikhailova N.V., Yudintseva N.M., Shevtsov M.A., Belikov A.V., Fedorova Yu.V. Thermophysical modeling and results of an experimental study of laser hyperthermia in gliomas. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(3):97-102. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_3_97