Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

New possibilities for the treatment of epilepsy: a review of literature data on Dibufelon

https://doi.org/10.56618/2071-2693_2023_15_3_116

Abstract

The selection of effective antiepileptic therapy is an important task for any neurologist. Despite many studies in the field of epileptology, about 30 % of all patients do not achieve stable pharmacological remission. A promising direction in the treatment of epilepsy is the use of drugs from the group of antioxidants. One of the new drugs of this type, which have shown their effectiveness, is Dibufelon, a drug of phenosanic acid. This literature review highlights the main etiological, pathogenetic and pharmacological aspects of the use of a new drug.

About the Authors

V. A. Saltanova
FGBOU VO “Tyumen State Medical University” of the Ministry of Health of Russia
Russian Federation

Saltanova Valentina Anatolyevna 

54, Odesskaya st., Tyumen, Tyumen region, 625023



L. I. Reikhert
FGBOU VO “Tyumen State Medical University” of the Ministry of Health of Russia
Russian Federation

Reichert Ludmila 

54, Odesskaya st., Tyumen, Tyumen region, 625023



E. V. Belova
FGBOU VO “Tyumen State Medical University” of the Ministry of Health of Russia
Russian Federation

Belova Elena Vasilievna 

54, Odesskaya st., Tyumen, Tyumen region, 625023



O. A. Kicherova
FGBOU VO “Tyumen State Medical University” of the Ministry of Health of Russia
Russian Federation

Kicherova Oksana Al’bertovna 

54, Odesskaya st., Tyumen, Tyumen region, 625023



References

1. World Health Organization et al. Epilepsy: a public health imperative. World Health Organization. 2019. https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative.

2. Usyukina M. V., Kornilova S. V., Lavrushchik M. V. Cognitive impairment and social functioning in organic personality disorder due to epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2021;121(6):21–26. (in Russ). https://doi.org/10.17116/jnevro202112106121 EDN: DOEWXV.

3. Butler T., Harvey P., Cardozo L., Zhu Y.-Sh., Mosa A., Tanzi E., Pervez F. Epilepsy, depression, and growth hormone. Epilepsy & Behavior. 2019;94:297–300. https://doi.org/10.1016/j.yebeh.2019.01.022.

4. Falco-Walter J. Epilepsy — definition, classification, pathophysiology, and epidemiology. Seminars in neurology. Thieme Medical Publishers, Inc., 2020;40(6):617–623. https://doi.org/10.1016/j.yebeh.2019.01.022

5. Vezzani A., Ravizza T., Bedner P., Aronica E., Steinhauser C., Boison D. Astrocytes in the initiation and progression of epilepsy. Nature Reviews Neurology. 2022:1–16. https://doi.org/10.1038/s41582‑022‑00727‑5

6. Fedin A. I., Starykh E. V., Torshin D. V. Oxidative stress in epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2019;119(1):97–101. (in Russ). https://doi.org/10.17116/jnevro201911901197 EDN: YWZVEL

7. Epilepsy and status epilepticus in adults and children. Klinicheskie rekomendacii RF. 2022. (in Russ). https://cr.minzdrav.gov.ru/recomend/741_1

8. Yang N., Guan Q-W., Chen F-H., Xia Q-X., Yin X –X., Zhou H-H., Mao X -Y. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxidative Medicine and Cellular Longevity. 2020;25;6687185. https://doi.org/10.1155/2020/6687185

9. Liang L.P., Waldbaum S., Rowley Sh., Huang T-T., Day B., Patel M. Mitochondrial oxidative stress and epilepsy in SOD 2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiology of disease. 2012; 45(3):1068–1076. https://doi.org/10.1016/j.nbd.2011.12.025

10. Cobley J. N., Fiorello M. L., Bailey D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox biology. 2018; Т. 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008

11. Cai Y., Yang Z. Ferroptosis and its role in epilepsy. Frontiers in Cellular Neuroscience. 2021;15:696889. https://doi.org/10.3389/fncel.2021.696889

12. Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L-P., Villa B. R., Balosso S., Abramov A. Y., van Vilet E. A., Del Giudice E., Aronica E., Patel M., Walker M. C., Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. 2019;1;142(7): е39. https://doi.org/10.1093/brain/awz130

13. Li L., Jin M., Ni H. Zinc/CaMK II associated-mitophagy signaling contributed to hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures and its regulation by chronic leptin treatment. Frontiers in Neurology. 2018; 9:802. https://doi.org/10.3389/fneur.2018.00802

14. Wu M., Liu X., Chi X., Zhang L., Xiong W., Chiang S. M.V., Zhou D., Li J. Mitophagy in refractory temporal lobe epilepsy patients with hippocampal sclerosis. Cellular and Molecular Neurobiology. 2018;38:479–486. https://doi.org/10.1007/s10571‑017‑0492‑2

15. Xing J., Han D., Xu D., Li X., Sun L. CREB protects against temporal lobe epilepsy associated with cognitive impairment by controlling oxidative neuronal damage. Neurodegenerative Diseases. 2019;19(5–6):225–237. https://doi.org/10.1159/000507023

16. Kaur H., Bal A., Sandhir R. Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacology Biochemistry and Behavior. 2014;125:55–64. https://doi.org/10.1016/j.pbb.2014.08.001

17. Polyak E., Ostrovsky J., Peng M., Dingley S. D., Tsukikawa M., Kwon Y. J., McCormack S.E., Bennett M., Xiao R., Seiler Ch., Zhang Z., Falk M. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Molecular Genetics and Metabolism. 2018;123(4):449–462. https://doi.org/10.1016/j.ymgme.2018.02.013

18. Falco-Walter J. Epilepsy — definition, classification, pathophysiology, and epidemiology. Seminars in neurology. Thieme Medical Publishers, Inc., 2020;40(6):617–623. https://doi.org/10.1055/s‑0040–1718719

19. Cardenas-Rodriguez N., Huerta-Gertrudis B., Rivera-Espinosa L., Montesinos-Correa H., Bandala C., Carmona-Aparacio L., Coballase-Urrutia E. R ole of oxidative stress in refractory epilepsy: evidence in patients and experimental models. International journal of molecular sciences. 2013;14(1):1455–1476. https://doi.org/10.3390/ijms14011455

20. Bazhanova E. D., Kozlov A. A., Litovchenko A. V. Mechanisms of drug resistance in the pathogenesis of epilepsy: role of neuroinflammation. A literature review. Brain Sciences. 2021;11(5):663. https://doi.org/10.3390/brainsci11050663 EDN: PIJPZG

21. Avakyan G. G., Nerobkova L. N., Oleinikova O. M., Voronina T. A., Avakyan G. N., Gusev E. I. Possibilities of using valproates and an antioxidant in secondary generalized seizures (clinical and experimental study). Epilepsiya i paroksizmal'nye sostoyaniya. 2011;3(2):34–44. (in Russ). EDN: NXVISV

22. Ivanova N. E., Kravtsova S. V., Fadeeva T. N., Dengina N. O., Odintsovo G. V. Efficacy and safety of Dibufelon in pharmacoresistant epilepsy. The Russian Neurosurgical Journal named after Prof. A. L. Polenov. 2023;15(1):24–29. https://doi.org/10.56618/2071–2693_2023_15_1_24 EDN: VWREYI

23. Chasovskaya T. E., Maltseva E. L., Palmina N. P. The effect of potassium phenosan on the structure of plasma membranes of mouse liver cells in vitro. Biofizika. 2013;58(1):97–105. (in Russ). PM ID: 23650860 EDN: PXQCIF

24. Gambini J., Ingles M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K. M., Gomez-Cabrera M.C., Vina J., Borras C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and human. Oxidative medicine and cellular longevity. 2015;2015:837042. https://doi.org/10.1155/2015/837042

25. Lopresti A. L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall healthenhancing effects? Advances in Nutrition. 2018;9(1):41–50. https://doi.org/10.1093/advances/nmx011

26. Kosman V. M., Karlina M. V., Tyutina K. V., Makarov V. G., Makarova M. N., Morozov S. V., Gushchina E. E., Zhuravskaya N. V. Preclinical study of the pharmacokinetic processes of phenosanoic acid ADM E in in vitro and in vivo systems. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2022;20(3):297–308. (in Russ). https://doi.org/10.17816/RCF203297–308 EDN: MJQPAM

27. Karlina M. V., Kosman V. M., Makarov V. G., Makarova M. N., Morozov S. V., Gushchina E. E., Zhuravskaya N. V. Evaluation of the pharmacokinetic interaction of the drug phenosanoic acid with drugs valproic acid and carbamazepine in dogs. Bezopasnost’ i risk farmakoterapii. 2022;10(4):420–433. (in Russ). https://doi.org/10.30895/2312‑7821‑2022‑10‑4‑420‑433 EDN: WVBMMZ

28. Burd S. G., Lebedeva A. V., Pantina N. V., Rubleva Yu.V., Pizova N. V., Vasiliev S. V., Belova A. N., Vorobieva O. V., Emelyanova V. V., Zhadnov V. A., Ivanova N. E., Kalinin V. V., Kissin M. Ya., Kotov S. V., Maksimova N. E., Mikhailov V. A., Novikov A. E. Clinical results and prospects for the use of fenosanic acid in adult patients with focal epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2021;121(10):52–9. (in Russ). https://doi.org/10.17116/jnevro202112110152 EDN: TKWELY

29. Voronkova K. V., Alieva A. M., Nikitin I. G., Musina G. M., Surskaya E. V., Zaitseva O. S., Mashkevich N. G., Gomonova L. V., Petrukhin A. WITH. The role of phenosanoic acid in the treatment of patients with epilepsy. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova. 2023;123(2):151–157. (in Russ). https://doi.org/10.17116/jnevro2023123021151 EDN: SSDKMR


Review

For citations:


Saltanova V.A., Reikhert L.I., Belova E.V., Kicherova O.A. New possibilities for the treatment of epilepsy: a review of literature data on Dibufelon. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(3):116-120. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_3_116

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)