New possibilities for the treatment of epilepsy: a review of literature data on Dibufelon
https://doi.org/10.56618/2071-2693_2023_15_3_116
Abstract
The selection of effective antiepileptic therapy is an important task for any neurologist. Despite many studies in the field of epileptology, about 30 % of all patients do not achieve stable pharmacological remission. A promising direction in the treatment of epilepsy is the use of drugs from the group of antioxidants. One of the new drugs of this type, which have shown their effectiveness, is Dibufelon, a drug of phenosanic acid. This literature review highlights the main etiological, pathogenetic and pharmacological aspects of the use of a new drug.
About the Authors
V. A. SaltanovaRussian Federation
Saltanova Valentina Anatolyevna
54, Odesskaya st., Tyumen, Tyumen region, 625023
L. I. Reikhert
Russian Federation
Reichert Ludmila
54, Odesskaya st., Tyumen, Tyumen region, 625023
E. V. Belova
Russian Federation
Belova Elena Vasilievna
54, Odesskaya st., Tyumen, Tyumen region, 625023
O. A. Kicherova
Russian Federation
Kicherova Oksana Al’bertovna
54, Odesskaya st., Tyumen, Tyumen region, 625023
References
1. World Health Organization et al. Epilepsy: a public health imperative. World Health Organization. 2019. https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative.
2. Usyukina M. V., Kornilova S. V., Lavrushchik M. V. Cognitive impairment and social functioning in organic personality disorder due to epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2021;121(6):21–26. (in Russ). https://doi.org/10.17116/jnevro202112106121 EDN: DOEWXV.
3. Butler T., Harvey P., Cardozo L., Zhu Y.-Sh., Mosa A., Tanzi E., Pervez F. Epilepsy, depression, and growth hormone. Epilepsy & Behavior. 2019;94:297–300. https://doi.org/10.1016/j.yebeh.2019.01.022.
4. Falco-Walter J. Epilepsy — definition, classification, pathophysiology, and epidemiology. Seminars in neurology. Thieme Medical Publishers, Inc., 2020;40(6):617–623. https://doi.org/10.1016/j.yebeh.2019.01.022
5. Vezzani A., Ravizza T., Bedner P., Aronica E., Steinhauser C., Boison D. Astrocytes in the initiation and progression of epilepsy. Nature Reviews Neurology. 2022:1–16. https://doi.org/10.1038/s41582‑022‑00727‑5
6. Fedin A. I., Starykh E. V., Torshin D. V. Oxidative stress in epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2019;119(1):97–101. (in Russ). https://doi.org/10.17116/jnevro201911901197 EDN: YWZVEL
7. Epilepsy and status epilepticus in adults and children. Klinicheskie rekomendacii RF. 2022. (in Russ). https://cr.minzdrav.gov.ru/recomend/741_1
8. Yang N., Guan Q-W., Chen F-H., Xia Q-X., Yin X –X., Zhou H-H., Mao X -Y. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxidative Medicine and Cellular Longevity. 2020;25;6687185. https://doi.org/10.1155/2020/6687185
9. Liang L.P., Waldbaum S., Rowley Sh., Huang T-T., Day B., Patel M. Mitochondrial oxidative stress and epilepsy in SOD 2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiology of disease. 2012; 45(3):1068–1076. https://doi.org/10.1016/j.nbd.2011.12.025
10. Cobley J. N., Fiorello M. L., Bailey D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox biology. 2018; Т. 15:490–503. https://doi.org/10.1016/j.redox.2018.01.008
11. Cai Y., Yang Z. Ferroptosis and its role in epilepsy. Frontiers in Cellular Neuroscience. 2021;15:696889. https://doi.org/10.3389/fncel.2021.696889
12. Pauletti A., Terrone G., Shekh-Ahmad T., Salamone A., Ravizza T., Rizzi M., Pastore A., Pascente R., Liang L-P., Villa B. R., Balosso S., Abramov A. Y., van Vilet E. A., Del Giudice E., Aronica E., Patel M., Walker M. C., Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. 2019;1;142(7): е39. https://doi.org/10.1093/brain/awz130
13. Li L., Jin M., Ni H. Zinc/CaMK II associated-mitophagy signaling contributed to hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures and its regulation by chronic leptin treatment. Frontiers in Neurology. 2018; 9:802. https://doi.org/10.3389/fneur.2018.00802
14. Wu M., Liu X., Chi X., Zhang L., Xiong W., Chiang S. M.V., Zhou D., Li J. Mitophagy in refractory temporal lobe epilepsy patients with hippocampal sclerosis. Cellular and Molecular Neurobiology. 2018;38:479–486. https://doi.org/10.1007/s10571‑017‑0492‑2
15. Xing J., Han D., Xu D., Li X., Sun L. CREB protects against temporal lobe epilepsy associated with cognitive impairment by controlling oxidative neuronal damage. Neurodegenerative Diseases. 2019;19(5–6):225–237. https://doi.org/10.1159/000507023
16. Kaur H., Bal A., Sandhir R. Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacology Biochemistry and Behavior. 2014;125:55–64. https://doi.org/10.1016/j.pbb.2014.08.001
17. Polyak E., Ostrovsky J., Peng M., Dingley S. D., Tsukikawa M., Kwon Y. J., McCormack S.E., Bennett M., Xiao R., Seiler Ch., Zhang Z., Falk M. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease. Molecular Genetics and Metabolism. 2018;123(4):449–462. https://doi.org/10.1016/j.ymgme.2018.02.013
18. Falco-Walter J. Epilepsy — definition, classification, pathophysiology, and epidemiology. Seminars in neurology. Thieme Medical Publishers, Inc., 2020;40(6):617–623. https://doi.org/10.1055/s‑0040–1718719
19. Cardenas-Rodriguez N., Huerta-Gertrudis B., Rivera-Espinosa L., Montesinos-Correa H., Bandala C., Carmona-Aparacio L., Coballase-Urrutia E. R ole of oxidative stress in refractory epilepsy: evidence in patients and experimental models. International journal of molecular sciences. 2013;14(1):1455–1476. https://doi.org/10.3390/ijms14011455
20. Bazhanova E. D., Kozlov A. A., Litovchenko A. V. Mechanisms of drug resistance in the pathogenesis of epilepsy: role of neuroinflammation. A literature review. Brain Sciences. 2021;11(5):663. https://doi.org/10.3390/brainsci11050663 EDN: PIJPZG
21. Avakyan G. G., Nerobkova L. N., Oleinikova O. M., Voronina T. A., Avakyan G. N., Gusev E. I. Possibilities of using valproates and an antioxidant in secondary generalized seizures (clinical and experimental study). Epilepsiya i paroksizmal'nye sostoyaniya. 2011;3(2):34–44. (in Russ). EDN: NXVISV
22. Ivanova N. E., Kravtsova S. V., Fadeeva T. N., Dengina N. O., Odintsovo G. V. Efficacy and safety of Dibufelon in pharmacoresistant epilepsy. The Russian Neurosurgical Journal named after Prof. A. L. Polenov. 2023;15(1):24–29. https://doi.org/10.56618/2071–2693_2023_15_1_24 EDN: VWREYI
23. Chasovskaya T. E., Maltseva E. L., Palmina N. P. The effect of potassium phenosan on the structure of plasma membranes of mouse liver cells in vitro. Biofizika. 2013;58(1):97–105. (in Russ). PM ID: 23650860 EDN: PXQCIF
24. Gambini J., Ingles M., Olaso G., Lopez-Grueso R., Bonet-Costa V., Gimeno-Mallench L., Mas-Bargues C., Abdelaziz K. M., Gomez-Cabrera M.C., Vina J., Borras C. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and human. Oxidative medicine and cellular longevity. 2015;2015:837042. https://doi.org/10.1155/2015/837042
25. Lopresti A. L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall healthenhancing effects? Advances in Nutrition. 2018;9(1):41–50. https://doi.org/10.1093/advances/nmx011
26. Kosman V. M., Karlina M. V., Tyutina K. V., Makarov V. G., Makarova M. N., Morozov S. V., Gushchina E. E., Zhuravskaya N. V. Preclinical study of the pharmacokinetic processes of phenosanoic acid ADM E in in vitro and in vivo systems. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2022;20(3):297–308. (in Russ). https://doi.org/10.17816/RCF203297–308 EDN: MJQPAM
27. Karlina M. V., Kosman V. M., Makarov V. G., Makarova M. N., Morozov S. V., Gushchina E. E., Zhuravskaya N. V. Evaluation of the pharmacokinetic interaction of the drug phenosanoic acid with drugs valproic acid and carbamazepine in dogs. Bezopasnost’ i risk farmakoterapii. 2022;10(4):420–433. (in Russ). https://doi.org/10.30895/2312‑7821‑2022‑10‑4‑420‑433 EDN: WVBMMZ
28. Burd S. G., Lebedeva A. V., Pantina N. V., Rubleva Yu.V., Pizova N. V., Vasiliev S. V., Belova A. N., Vorobieva O. V., Emelyanova V. V., Zhadnov V. A., Ivanova N. E., Kalinin V. V., Kissin M. Ya., Kotov S. V., Maksimova N. E., Mikhailov V. A., Novikov A. E. Clinical results and prospects for the use of fenosanic acid in adult patients with focal epilepsy. Zhurnal nevrologii i psihiatrii im. CC Korsakova. 2021;121(10):52–9. (in Russ). https://doi.org/10.17116/jnevro202112110152 EDN: TKWELY
29. Voronkova K. V., Alieva A. M., Nikitin I. G., Musina G. M., Surskaya E. V., Zaitseva O. S., Mashkevich N. G., Gomonova L. V., Petrukhin A. WITH. The role of phenosanoic acid in the treatment of patients with epilepsy. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova. 2023;123(2):151–157. (in Russ). https://doi.org/10.17116/jnevro2023123021151 EDN: SSDKMR
Review
For citations:
Saltanova V.A., Reikhert L.I., Belova E.V., Kicherova O.A. New possibilities for the treatment of epilepsy: a review of literature data on Dibufelon. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2023;15(3):116-120. (In Russ.) https://doi.org/10.56618/2071-2693_2023_15_3_116