Results of laser interstitial thermotherapy in the treatment of spinal tumor
https://doi.org/10.56618/2071-2693_2024_16_4_90
EDN: WDSJQW
Abstract
INTRODUCTION. Autopsy data indicate that metastatic involvement of the spine occurs in over 70 % of cancer patients. Treatment for this condition is predominantly palliative. Advances in spinal oncology are presenting new surgical technologies that minimize the extent of surgical intervention while maximizing the preservation of the patient’s quality of life. One innovative approach is laser interstitial thermotherapy.
AIM. To evaluate the impact of laser interstitial thermotherapy on functional activity, neurological status, and quality of life in patients with spinal tumors.
MATERIALS AND METHODS. The study sample comprised 60 middle-aged patients diagnosed with spinal tumors. The cohort was divided into two groups of 30 individuals each. Patients in the experimental group underwent surgery utilizing the LAHTA-MILON semiconductor laser. The surgical procedure was conducted in two phases: Phase 1 involved transcutaneous intracapsular exposure to tumor nodes located near the paravertebral region under ultrasound guidance using a laser. Phase 2 entailed intraoperative exposure to tumor tissue located proximal to the dural sac and nerve roots. Patient conditions were evaluated prior to surgery, one day postoperatively, and before hospital discharge (days 7–10). Severity of motor deficits was quantified on a five-point scale. Assessment of sensory deficits incorporated examinations for changes in both superficial and deep sensory modalities, as well as the categorization of disturbances (segmental versus conductive). The Frankel scale facilitated the evaluation of surgical outcomes and quality of life across both groups in pre- and postoperative phases. Data analysis was performed utilizing the standard Statistica 10.0 software package.
RESULTS. The findings reveal that motor deficits were observed in 55 of 60 patients (91.7 %). By the 10th postoperative day, regression of motor deficits occurred in both groups, with 16.7 % of the control group and 26.7 % of the experimental group demonstrating improvement. Additionally, the prevalence of motor deficits diminished overall. Sensory disturbances were initially identified in 58 (96.7 %) of the patients. By the 10th postoperative day, sensory deficits of varying severity persisted in 22 (73.3 %) patients in the experimental group and 23 (76.7 %) patients in the control group. A month postoperatively, regression of sensory deficits was notable: 96.7 to 46.7 % in the experimental group and 96.7 to 60 % in the control group, yielding statistically significant results. Radicular pain syndrome was initially present in 41 (68.3%) patients, encompassing 19 (63.3 %) in the control group and 21 (73.3 %) in the experimental group. By the 10th postoperative day, radicular pain syndrome regressed in 47 (78.3 %) of the total cohort, with persistence in 13 (21.7 %) patients; in the control group, pain persisted in 6 (20 %) patients, while in the experimental group, it persisted in 7 (23.3 %) patients. Notably, functional outcomes in the experimental group, utilizing laser interstitial thermotherapy, were significantly superior compared to the control group by day 10 post-surgery. Specifically, 4 (13.3 %) patients in the experimental group achieved good outcomes, 16 (53.3 %) satisfactory outcomes, and 10 (30.3 %) poor outcomes. In contrast, the control group yielded good outcomes for 2 (6.7 %) patients, satisfactory outcomes for 8 (26.7 %), and poor outcomes for 20 (66.6 %) patients. The employment of surgical lasers in lumbosacral tumor resections resulted in reduced hemorrhage, with estimated blood loss of (210.5±20.6) ml in the experimental group compared to (350.0±21.3) ml in the control group, and (498.7±75.9) ml versus (910.5±97.6) ml overall.
CONCLUSION. The application of the LAHTA-MILON laser, in contrast to conventional surgical methodologies, diminishes traction and trauma to the spinal column and its nerve roots, leading to reduced severity of neurological symptoms and enhanced quality of life in the postoperative period.
About the Authors
S. A. TuranovRussian Federation
Semen A. Turanov – Postgraduate Student at the Department of Neurosurgery
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
A. V. Ivanenko
Russian Federation
Andrei V. Ivanenko – Dr. of Sci. (Tech.), Associate Professor at the Department of Neurosurgery
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
A. V. Kudziev
Russian Federation
Andrey V. Kudziev – Neurosurgeon
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
E. V. Adieva
Russian Federation
Elena V. Adieva – Anesthesiologist
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
D. A. Sitovskaia
Russian Federation
Daria A. Sitovskaia – Researcher at the Research Institute of Pathomorphology of the Nervous System Pathologist
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
A. Z. Gagiev
Russian Federation
Alexandr Z. Gagiev – Clinical Resident at the Department of Neurosurgery
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
A. S. Tsyndyaykina
Russian Federation
Angelina S. Tsyndyaykina – Postgraduate Student at the Department of Neurosurgery
12 Mayakovskogo street, St. Petersburg, Russian Federation, 191025
References
1. The state of cancer care for the Russian population in 2022; eds by A. D. Kaprin, V. V. Starinsky, A. O. Shahzadova. Moscow: NMRC of the Ministry of Health of Russian Federation; 2022. 239 p. (In Russ.).
2. Tatsui C. E., Belsuzarri T. A., Oro M., Rhines L. D., Li J., Ghia A. J., Amini B., Espinoza H., Brown P. D., Rao G. Percutaneous surgery for treatment of epidural spinal cord compression and spinal instability: technical note. Neurosurg Focus. 2016;41(4):E2. Doi: 10.3171/2016.8.FOCUS16175.
3. Bastos D. C. A., Vega R. A., Traylor J. I., Ghia A. J., Li J., Oro M., Bishop A. J., Yeboa D. N., Amini B., Kumar V. A., Rao G., Rhines L. D., Tatsui C. E. Spinal laser interstitial thermal therapy: single-center experience and outcomes in the first 120 cases. J Neurosurg Spine. 2020, pp. 1–10. Doi: 10.3171/2020.7.SPINE20661.
4. Cardia A., Cannizzaro D., Stefini R. et al. The efficacy of laser interstitial thermal therapy in the management of spinal metastases: a systematic review of the literature. Neurol Sci. 2023;(44):519–528. Doi: 10.1007/s10072-022-06432-x.
5. Barzilai O., Fisher C. G., Bilsky M. H. State of the art treatment of spinal metastatic disease. Neurosurgery. 2018;82(6):757–769. Doi: 10.1093/neuros/nyx567.
6. Sullivan P. Z., Niu T., Abinader J. F. et al. Evolution of Surgical Treatment of Metastatic Spine Tumors. Research Square. 2022. 6 Jan. Doi: 10.21203/rs.3.rs-1153745/v1.
7. Stupak V. V., Shabanov S. V., Pendyurin I. V., Rabchinovich S. S. Results of surgical treatment of patients with hourglass-type extramedullary tumors. Spine surgery. 2014;(4):65–71. (In Russ.).
8. Tatsui C. E., Stafford R. J., Li J., Sellin J. N., Amini B., Rao G., Suki D., Ghia A. J., Brown P., Lee S. H., Cowles C. E.., Weinberg J. S., Rhines L. D. Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg Spine. 2015;23(4):400–411. Doi: 10.3171/2015.2.SPINE141185.
9. Missios S., Bekelis K., Barnett G. H. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015;38(3):E13. Doi: 10.3171/2014.12.FOCUS14762.
10. Kang J. Y., Wu C., Tracy J., Lorenzo M., Evans J., Nei M., Skidmore C., Mintzer S., Sharan A. D., Sperling M. R. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016; 57(2):325–334. Doi: 10.1111/epi.13284.
11. Silva D., Sharma M., Juthani R., Meola A., Barnett G. H. Magnetic resonance thermometry and laser interstitial thermal therapy for brain tumors. Neurosurg Clin N Am. 2017;28(4):525–533. Doi: 10.1016/j.nec.2017.05.015.
12. Hong C. S., Kundishora A. J., Elsamadicy A. A., Chiang V. L. Laser interstitial thermal therapy in neuro-oncology applications. Surg Neurol Int. 2020;8(11):231. Doi: 10.25259/SNI_496_2019.
13. Srinivasan E. S., Grabowski M. M., Nahed B. V., Barnett G. H., Fecci P. E. Laser interstitial thermal therapy for brain metastases. Neurooncol Adv. 2021;3(Suppl 5):v16–v25. Doi: 10.1093/noajnl/vdab128.
14. Srinivasan E. S., Sankey E. W., Grabowski M. M., Chongsathidkiet P., Fecci P. E. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia. 2020;37(2):27–34. Doi: 10.1080/02656736.2020.1746413.
15. Pennington Z., Ahmed A. K., Molina C. A., Ehresman J., Laufer I., Sciubba D. M. Minimally invasive versus conventional spine surgery for vertebral metastases: a systematic review of the evidence. Ann Transl Med. 2018;6(6):103. Doi: https://doi.org/10.21037/atm.2018.01.28.
16. Bown S. G. Phototherapy in tumors. World J Surg. 1983;7(6):700–709. Doi: 10.1007/BF01655209.
17. Schwarzmaier H. J., Eickmeyer F., von Tempelhoff W., Fiedler V. U., Niehoff H., Ulrich S. D., Yang Q., Ulrich F. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006;59(2):208–215. Doi: 10.1016/j.ejrad.2006.05.010.
18. Vogl T. J., Dommermuth A., Heinle B., Nour-Eldin N. E., Lehnert T., Eichler K., Zangos S., Bechstein W. O., Naguib N. N. Colorectal cancer liver metastases: long-term survival and progression-free survival after thermal ablation using magnetic resonance-guided laser-induced interstitial thermotherapy in 594 patients: analysis of prognostic factors. Invest Radiol. 2014;49(1):48–56. Doi: 10.1097/RLI.0b013e3182a6094e.
19. Ahrar K., Stafford R. J. Magnetic resonance imaging-guided laser ablation of bone tumors. Tech Vasc Interv Radiol. 2011;14(3):177–182. Doi: 10.1053/j.tvir.2011.02.010.
20. McNichols R. J., Gowda A., Kangasniemi M., Bankson J. A., Price R. E., Hazle J. D. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med. 2004;34(1):48–55. Doi: 10.1002/lsm.10243.
21. Chudnovsky V. M., Yusupov V. I., Ivanenko A. V., Shedrenok V. V., Sebelev K. I., Moguchaya O. V. Analysis of acoustic and hydrodynamic phenomena of laser puncture treatment of degenerative diseases of intervertebral discs. The Russian Neurosurgical Journal named after prof. A. L. Polenov. 2011;3(2):52–57. (In Russ.).
22. Laufer I., Rubin D. G., Lis E., Cox B. W., Stubblefield M. D., Yamada Y., Bilsky M. H. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–751. Doi: 10.1634/theoncologist.2012-0293.
23. Tatsui C. E., Nascimento C. N. G., Suki D., Amini B., Li J., Ghia A. J., Thomas J. G., Stafford R. J., Rhines L. D., Cata J. P., Kumar A. J., Rao G. Image guidance based on MRI for spinal interstitial laser thermotherapy: technical aspects and accuracy. J Neurosurg Spine. 2017;26(5):605–612. Doi: 10.3171/2016.9.SPINE16475.
24. Tokuhashi Y., Uei H., Oshima M., Ajiro Y.Scoring system for prediction of metastatic spine tumor prognosis. World J Orthop. 2014;5(3):262–271. Doi: 10.5312/wjo.v5.i3.262.
25. Akeyson E. W., McCutcheon I. E. Single-stage posterior vertebrectomy and replacement combined with posterior instrumentation for spinal metastasis. J Neurosurg. 1996;85(2):211–220. Doi: 10.3171/jns.1996.85.2.0211.
26. Tatsui C. E., Stafford R. J., Li J., Sellin J. N., Amini B., Rao G., Suki D., Ghia A. J., Brown P., Lee S. H., Cowles C. E.., Weinberg J. S., Rhines L. D. Utilization of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastasis. J Neurosurg Spine. 2015;23(4):400–411. Doi: 10.3171/2015.2.SPINE141185.
27. Missios S., Bekelis K., Barnett G. H. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015;38(3):E13. Doi: 10.3171/2014.12.FOCUS14762.
28. de Almeida Bastos D. C., Everson R. G., de Oliveira Santos B. F., Habib A., Vega R. A., Oro M., Rao G., Li J., Ghia A. J., Bishop A. J., Yeboa D. N., Amini B., Rhines L. D. Tatsui C. E. A comparison of spinal laser interstitial thermotherapy with open surgery for metastatic thoracic epidural spinal cord compression. J Neurosurg Spine. 2020, pp. 1–9. Doi: 10.3171/2019.10.SPINE19998.
29. Yamada Y., Bilsky M. H., Lovelock D. M., Venkatraman E. S., Toner S., Johnson J., Zatcky J., Zelefsky M. J., Fuks Z. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–490. Doi: 10.1016/j.ijrobp.2007.11.046.
30. Moses Z. B., Lee T. C., Huang K. T., Guenette J. P., Chi J. H. MRI-guided cryoablation for metastatic spine disease: intermediate-term clinical outcomes in 14 consecutive patients. J Neurosurg Spine. 2020, pp. 1–6. Doi: 10.3171/2019.11.SPINE19808.
31. Sahgal A., Bilsky M., Chang E. L., Ma L., Yamada Y., Rhines L. D., Létourneau D., Foote M., Yu E., Larson D. A., Fehlings M. G. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine. 2011;14(2):151–166. Doi: 10.3171/2010.9.SPINE091005.
32. Nguyen Q. N., Shiu A. S., Rhines L. D., Wang H., Allen P. K., Wang X. S., Chang E. L. Management of spinal metastases from renal cell carcinoma using stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(4):1185–1192. Doi: 10.1016/j.ijrobp.2009.03.062.
33. Clohisy D. R., Perkins S. L., Ramnaraine M. L. Review of cellular mechanisms of tumor osteolysis. Clin Orthop Relat Res. 2000;(373):104–114. Doi: 10.1097/00003086-200004000-00013.
34. Sacino M., Huang S. S., Alexander H., Fayed I., Keating R. F., Oluigbo C. O. An initial cost-effectiveness analysis of magnetic resonance-guided laser interstitial thermal therapy in pediatric epilepsy surgery. Pediatr Neurosurg. 2020;55(3):141–148. Doi: 10.1159/000509329.
35. Molina C. A., Gokaslan Z. L., Sciubba D. M. Diagnosis and management of metastatic cervical spine tumors. Orthop Clin N Am. 2012;43(1):75–87. Doi: 10.1016/j.ocl.2011.08.004 (viii-ix).
36. Zaed I., Bossi B., Ganau M., Tinterri B., Giordano M., Chibbaro S. Current state of benefits of enhanced recovery after surgery (ERAS) in spinal surgeries: a systematic review of the literature. Neurochirurgie. 2022;68(1):61–68. Doi: 10.1016/j.neuchi.2021.04.007.
37. Gilbert R. W., Kim J. H., Posner J. B. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3(1):40–51. Doi: 10.1002/ana.410030107.
38. Maranzano E., Latini P., Checcaglini F., Ricci S., Panizza B. M., Aristei C., Perrucci E., Beneventi S., Corgna E., Tonato M. Radiation therapy in metastatic spinal cord compression. A prospective analysis of 105 consecutive patients. Cancer. 1991;67(5):1311–1317. Doi: 10.1002/1097-0142(19910301)67:5<1311::aid-cncr2820670507>3.0.co;2-r.
39. University of Florida. Recurrent brain metastasis immune effects and response to laser interstitial thermotherapy (LITT) and pembrolizumab in combination (TORCH). Available from: clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT04187872. [Accessed 29 July 2021].
40. Young R. F., Post E. M., King G. A. Treatment of spinal epidural metastases. Randomized prospective comparison of laminectomy and radiotherapy. J Neurosurg. 1980;53(6):741–748. Doi: 10.3171/jns.1980.53.6.0741.
41. Payer S., Mende K. C., Westphal M., Eicker S. O. Intramedullary spinal cord metastases: an increasingly common diagnosis. Neurosurg Focus. 2015; 39(2):E15. Doi: 10.3171/2015.5.FOCUS15149
Review
For citations:
Turanov S.A., Ivanenko A.V., Kudziev A.V., Adieva E.V., Sitovskaia D.A., Gagiev A.Z., Tsyndyaykina A.S. Results of laser interstitial thermotherapy in the treatment of spinal tumor. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2024;16(4):90-101. (In Russ.) https://doi.org/10.56618/2071-2693_2024_16_4_90. EDN: WDSJQW