Preview

Российский нейрохирургический журнал имени профессора А. Л. Поленова

Расширенный поиск

Effective movement control (re ) habilitation in Cerebral Palsy: the use of Translingual Neurostimulation (TLNS)

Аннотация

Purpose . To investigate the acceptability, efficacy, and effect duration of translingual neurostimulation (TLNS) plus standard therapeutic exercise program (TEP) to improve motor skills in children with cerebral palsy (CP).
Me thods. Participants aged 2–17 years (n = 134) diagnosed with spastic diplegia CP with coordination and mobility symptoms were enrolled at Sestroretsk City Hospital № 40. Participants were offered one of two treatment regimens: either TEP plus TLNS with the Portable Neuromodulation Stimulator (PoNS™) – experimental arm or TEP alone (control).
The treatment course continued for ten days (2 weeks, excluding two weekend days). In the experimental group and TEP, TLNS was applied twice a day, 20 minutes each during exercises, morning, and afternoon, at least 3 hours between sessions. Assessments before and after therapy courses measured spasticity, balance, and motor skills. Either treatment could be repeated several times (6–12 months between courses). All children were assessed before and after a course round of therapy using standard scales for spasticity, balance, and motor skills (Ashworth scale, Berg scale, Gross Motor Function Classification System, Functional Movement Screen). Results: Both groups of patients showed improvement; however, the improvement was significantly more significant in the experimental group across all scales, observed in all ages, and largely sustained for 6–12 months.
Conclusions . TLNS plus TEP can be considered as a novel and promising strategy to improve neurorehabilitation outcomes in children with CP, offering broad implications for the development and use of TLNS in CP.

Об авторах

T. Ignatova
St. Petersburg Municipal Budgetary Institution City Hospital № 40
Россия

St. Petersburg



V. Kolbin
St. Petersburg Municipal Budgetary Institution City Hospital № 40
Россия


A. Sarana
St. Petersburg Municipal Budgetary Institution City Hospital № 40; Saint Petersburg University
Россия

St. Petersburg



S. Scherbak
St. Petersburg Municipal Budgetary Institution City Hospital № 40; Saint Petersburg University
Россия

St. Petersburg



A. Skoromets
Childrens City Hospital № 1
Россия

St. Petersburg



G. Ikoeva
I. I. M echnikov North-Western State Medical University; Turner Scientific Research Institute for Children’s Orthopedics
Россия

St. Petersburg



Yu. Danilov
Pavlov Institute of Physiology, Russian Academy of Sciences; Rehabilitation clinic Rehaline
Россия

St. Petersburg

Moscow



Список литературы

1. A icardi J, Bax M, Gillberg C, Ogier H. Diseases of the nervous system in childhood: Mac Keith Press London; 1992.

2. Barashnev Y. Hypoxic-ischemic encephalopathy of newborns: contribution of perinatal factors, pathogenetic characteristics, and forecast. Ros vest perinat and pediatrician. 1996;2:29–35.

3. Peri E, Turconi AC, Biffi E, Maghini C, Panzeri D, Morganti R, et al. Effects of dose and duration of Robot-Assisted Gait Training on walking ability of children affected by cerebral palsy. Technol Health Care. 2017;25(4):671–81.

4. Picelli A, La Marchina E, Vangelista A, Chemello E, Modenese A, Gandolfi M, et al. Effects of Robot-Assisted Training for the Unaffected Arm in Patients with Hemiparetic Cerebral Palsy: A Proof-of-Concept Pilot Study. Behav Neurol. 2017;1:1–9.

5. Chen Y, Fanchiang HD, Howard A. Effectiveness of Virtual Reality in Children With Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys Ther. 2018;98(1):63–77.

6. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. 2017;171(9):897– 907.

7. R yan JM, Cassidy EE, Noorduyn SG, O’Connell NE. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017;6: CD 011660.

8. Schabrun SM, Ridding MC, Chipchase LSJPP, Research. An update on brain plasticity for physical therapists. 2013;34(1):1–8.

9. L illard AS, Erisir AJDr. Old dogs learning new tricks: Neuroplasticity beyond the juvenile period. 2011;31(4):207–39.

10. Cramer SC, Sur M, Dobkin BH, O’brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. 2011;134(6):1591–609.

11. Tyler ME, Kaczmarek KA, Rust KL, Subbotin AM , Skinner KL, Danilov YPJJon, et al. Noninvasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. 2014;11(1):1–10.

12. Bach-y-Rita PJBI. Theoretical basis for brain plasticity after a TBI. 2003;17(8):643–51.

13. Bach-y-Rita PJN. Brain plasticity as a basis for recovery of function in humans. 1990;28(6):547–54.

14. M oll I, Vles JS, Soudant DL, Witlox AM , Staal HM, Speth LA , et al. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review. 2017;59(12):1230–6.

15. Zvozil AV ME, Vissarionov SV, et al. Functional and spinal stimulation in complex rehabilitation of patients with CP. Successes of modern science. 2015;2:4046.

16. Shabalov V , Dekopov A, Troshina EJZvniNB. Preliminary results of treatment for spastic forms of infantile cerebral paralysis by chronic epidural neurostimulation of lumbar enlargement. 2006(3):10–3; discussion 3.

17. Dekopov AV BA, Vinogradov AV , et al. Neurosurgical treatment of the spastic syndrome in children with cerebral palsy. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7 Pt 2):34–40.

18. Solopova I, Sukhotina I, Zhvansky D, Ikoeva G, Vissarionov S, Baindurashvili A, et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy. 2017;639:192–8.

19. Elia AE, Bagella CF, Ferré F, Zorzi G, Calandrella D, Romito LM - Jejopn. Deep brain stimulation for dystonia due to cerebral palsy: a review. 2018;22(2):308–15.

20. Koy A, Timmermann LJEJoPN. Deep brain stimulation in cerebral palsy: challenges and opportunities. 2017;21(1):118–21.

21. V idailhet M, Yelnik J, Lagrange C, Fraix V , Grabli D, Thobois S, et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol. 2009;8(8):709–17.

22. A ir EL, Ostrem JL, Sanger TD, Starr PAJJoNP. Deep brain stimulation in children: experience and technical pearls. 2011;8(6):566–74.

23. G illick BT, Gordon AM , Feyma T, Krach LE, Carmel J, Rich TL, et al. Noninvasive Brain Stimulation in Children With Unilateral Cerebral Palsy: A Protocol and Risk Mitigation Guide. Front Pediatr. 2018;6(March):56.

24. Krishnan C, Santos L, Peterson MD, Ehinger MJBs. Safety of noninvasive brain stimulation in children and adolescents. 2015;8(1):76–87.

25. Zewdie E, Ciechanski P, Kuo H, Giuffre A, Kahl C, King R, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: prospective single center evidence from 3.5 million stimulations. 2020;13(3):565–75.

26. G illick BT, Kirton A, Carmel JB, Minhas P, Bikson MJFihn. Pediatric stroke and transcranial direct current stimulation: methods for rational individualized dose optimization. 2014;8:739.

27. R ubia K. Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Front Hum Neurosci. 2018;12:1–23.

28. Hadoush H, Nazzal M, Almasri NA, Khalil H, Alafeef MJAR . Therapeutic effects of bilateral anodal transcranial direct current stimulation on prefrontal and motor cortical areas in children with autism spectrum disorders: a pilot study. 2020;13(5):828–36.

29. Palm U, Segmiller FM, Epple AN, Freisleder F-J, Koutsouleris N, Schulte-Körne G, et al. Transcranial direct current stimulation in children and adolescents: a comprehensive review. 2016;123(10):1219–34.

30. Jacobs CS, Willment KC, Sarkis RA JFin. Noninvasive cognitive enhancement in Epilepsy. 2019;10:167.

31. A uvichayapat P, Aree-Uea B, Auvichayapat N, Phuttharak W, Janyacharoen T, Tunkamnerdthai O, et al. Transient changes in brain metabolites after transcranial direct current stimulation in spastic cerebral palsy: a pilot study. 2017;8:366.

32. Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM , Pascual-Leone A, et al. Transcranial magnetic and direct current stimulation in children. 2017;17(2):11.

33. M agis D, Jensen R, Schoenen JJCoin. Neurostimulation therapies for primary headache disorders: present and future. 2012;25(3):269–76.

34. Bersani FS, Minichino A, Enticott PG, Mazzarini L, Khan N, Antonacci G, et al. Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. 2013;28(1):30–9.

35. Iglesias AHJCn, reports n. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions. 2020;20(1):1–9.

36. Poppa T, De Witte S, Vanderhasselt M-A, Bechara A, Baeken CJIJoP. Theta-burst stimulation and frontotemporal regulation of cardiovascular autonomic outputs: The role of state anxiety. 2020;149:25–34.

37. Bunse T, Wobrock T, Strube W, Padberg F, Palm U, Falkai P, et al. Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: a systematic review. 2014;7(2):158–69.

38. Kamble N, Netravathi M, Pal PKJP, disorders r. Therapeutic applications of repetitive transcranial magnetic stimulation (rTMS) in movement disorders: a review. 2014;20(7):695–707.

39. R ajapakse T, Kirton AJTn. Noninvasive brain stimulation in children: applications and future directions. 2013;4(2):217–33.

40. R ajak B, Gupta M, Bhatia D, Mukherjee AJIJPMR . Effect of Repetitive Transcranial Magnetic Stimulation Pulses on Muscle Spasticity of Cerebral Palsy Children. 2018;6(465):2.

41. G illick BT, Gordon AM , Feyma T, Krach LE, Carmel J, Rich TL, et al. Noninvasive brain stimulation in children with unilateral cerebral palsy: a protocol and risk mitigation guide. 2018;6:56.

42. Fehlings D, Brown L, Harvey A, Himmelmann K, Lin JP, Macintosh A, et al. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol. 2018;60(4):356–66.

43. Bikson M, Grossman P, Thomas C, Zannou AL , Jiang J, Adnan T, et al. safety of transcranial direct current stimulation: evidence based update 2016. 2016;9(5):641–61.

44. L eonard G, Lapierre Y, Chen J-K, Wardini R, Crane J, Ptito AJMSJE, Translational, et al. Noninvasive tongue stimulation combined with intensive cognitive and physical rehabilitation induces neuroplastic changes in patients with multiple sclerosis: a multimodal neuroimaging study. 2017;3(1):1–9.

45. Paltin D, Danilov Y, Tyler M. Direct and indirect benefits of translingual neurostimulation technology for neurorehabilitation of chronic stroke symptoms. Brain-Machine Interfaces: Uses and Development: Nova Science Publishers; 2018. p. 69–83.

46. D’Arcy RC, Greene T, Greene D, Frehlick Z, Fickling SD, Campbell N, et al. Portable neuromodulation induces neuroplasticity to re-activate motor function recovery from brain injury: a high-density MEG case study. 2020;17(1):1–12.

47. Fickling SD, Greene T, Greene D, Frehlick Z, Campbell N, Etheridge T, et al. Brain Vital Signs Detect Cognitive Improvements During Combined Physical Therapy and Neuromodulation in Rehabilitation From Severe Traumatic Brain Injury: A Case Report. 2020;14.

48. Danilov Y, Kaczmarek K, Skinner K, Tyler M. Cranial nerve noninvasive neuromodulation: new approach to neurorehabilitation. In: FH K, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015.

49. Danilov Y, Paltin D. Translingual neurostimulation (TLNS): perspective on a novel approach to neurorehabilitation after brain injury. Pre-Clinical and Clinical Methods in Brain Trauma Research: Springer; 2018. p. 307–27.

50. Danilov Y, Tyler M, Skinner K, Hogle R, Bach-y-Rita PJJoVR . Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. 2007;17(2, 3):119–30.

51. Diep D, Lam AC, Ko GJNTatNI. A Review of the Evidence and Current Applications of Portable Translingual Neurostimulation Technology. 2020.

52. Danilov YP, Tyler ME, Kaczmarek KA. Vestibular sensory substitution using tongue electrotactile display. Human haptic perception: basics and applications: Springer; 2008. p. 467–80.

53. Sanders RDJP. The trigeminal (V) and facial (VII) cranial nerves: head and face sensation and movement. 2010;7(1):13.

54. Dehmel S, Cui Y, Shore S. Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. 2008.

55. Shore SE, Vass Z, Wys NL, Altschuler RA JJoCN. Trigeminal ganglion innervates the auditory brainstem. 2000;419(3):271–85.

56. G hulyan-Bedikian V , Paolino M, Paolino FJG, posture. Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: Influence of vestibular loss and old-age. 2013;38(4):777–83.

57. A dair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, et al. Electrical stimulation of cranial nerves in cognition and disease. 2020;13(3):717–50.

58. Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE, et al. Neuroprotective effects of trigeminal nerve stimulation in severe traumatic brain injury. 2017;7(1):1–13.

59. L iu GTJW, Hoyt’s clinical neuro-ophthalmology E. The trigeminal nerve and its central connections. 2005;6:1233–68.

60. Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand MEJBc. Electrical tongue stimulation normalizes activity within the motion-sensitive brain network in balance-impaired subjects as revealed by group independent component analysis. 2011;1(3):255–65.

61. Torvik AJJoCN. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract, and adjacent structures. An experimental study in the rat. 1956;106(1):51–141.

62. Xie G, Zhang F, Leung L, Mooney MA , Epprecht L, Norton I, et al. Anatomical assessment of trigeminal nerve tractography using diffusion MR I: A comparison of acquisition b-values and single-and multi-fiber tracking strategies. 2020;25:102160.

63. Ptito A, Papa L, Gregory K, Folmer RL , Walker WC, Prabhakaran V , et al. A prospective, multicenter study to assess the safety and efficacy of translingual neurostimulation plus physical therapy for the treatment of a chronic balance deficit due to mild‐to‐moderate traumatic brain injury. 2020.

64. R osenbaum PL, Walter SD, Hanna SE, Palisano RJ, Russell DJ, Raina P, et al. prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA . 2002;288(11):1357–63.

65. Tyler M, Skinner K, Prabhakaran V , Kaczmarek K, Danilov YJAoRR , Translation C. Translingual neurostimulation for the treatment of chronic symptoms due to mild-to-moderate traumatic brain injury. 2019;1(3–4):100026.

66. G alea MP, Lizama LEC, Bastani A, Panisset MG , Khan FJBSB, Translational, Neuromodulation CRi. Cranial nerve noninvasive neuromodulation improves gait and balance in stroke survivors: a pilot randomised controlled trial. 2017;10(6):1133–5.

67. Ignatova TS, Ikoeva GA , Kolbin VE, Sarana AM , Shcherbak SG, Volkov VG , et al. Effectiveness evaluation of translingual neurostimulation in motor rehabilitation in children with spastic diplegia. 2019;7(2):17–24.


Рецензия

Для цитирования:


Ignatova T., Kolbin V., Sarana A., Scherbak S., Skoromets A., Ikoeva G., Danilov Yu. Effective movement control (re ) habilitation in Cerebral Palsy: the use of Translingual Neurostimulation (TLNS). Российский нейрохирургический журнал имени профессора А. Л. Поленова. 2021;13(2):29-38.

For citation:


Ignatova T., Kolbin V., Sarana A., Scherbak S., Skoromets A., Ikoeva G., Danilov Yu. Effective movement control (re ) habilitation in Cerebral Palsy: the use of Translingual Neurostimulation (TLNS). Russian Neurosurgical Journal named after Professor A. L. Polenov. 2021;13(2):29-38.

Просмотров: 44


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)