Preview

Russian Neurosurgical Journal named after Professor A. L. Polenov

Advanced search

Analysis of the effectiveness of a rehabilitation suit in children with cerebral palsy based on comparative changes in resting-state functional brain networks

https://doi.org/10.56618/2071-2693_2025_17_3_111

EDN: WJGIOW

Abstract

INTRODUCTION. Cerebral palsy (CP) is the leading cause of motor impairment in childhood and calls for comprehensive rehabilitation approaches whose effectiveness must be objectively verified. Resting-state functional MRI (rs-fMRI) provides new opportunities to explore neuroplastic changes elicited by therapy.

AIM. To evaluate the impact of a rehabilitation course employing a neuro-orthopedic suit on clinical outcomes and resting-state functional connectivity in children with spastic forms of CP.

MATERIALS AND METHODS. Thirty children with spastic diplegia (Gross Motor Function Classification System, GMFCS levels II–III; mean age (8±3) years) were enrolled in a prospective study. All participants completed a 4-week rehabilitation program using the “Atlant” suit. Clinical assessments (GMFM-88, Modified Ashworth Scale, MACS, SATCo, goniometry) and rs-fMRI (Siemens 1.5 T) were performed before and after the course. Seed-based analysis focused on the sensorimotor network (SMN); intraand inter-network connectivity changes were examined. Statistics included paired t tests and Pearson correlation.

RESULTS. After the 4-week intervention, significant improvements were observed on all principal clinical scales: total GMFM-88 scores increased, spasticity on the Modified Ashworth Scale decreased, manual ability (MACS) and trunk control (SATCo) improved, and joint range of motion increased on goniometry (all p<0.05). rs-fMRI revealed strengthened functional connectivity between key SMN nodes (primary motor cortex and supplementary motor area) and a reduction of pathological hyperconnectivity between the SMN and the default mode network (DMN). Enhancement of SMN connectivity correlated with motor gains (r=0.65, p<0.01).

CONCLUSION. Use of the rehabilitation suit leads not only to clinical improvement but also to favorable reorganization of functional brain networks in children with CP. Resting-state network analysis is a sensitive tool for objectifying rehabilitation effects and elucidating mechanisms of neuroplasticity.

About the Authors

F. A. Tlizamova
Almazov National Medical Research Center
Russian Federation

Fatima A. TlizamovaPostgraduate Student at the Department of Radiology and Medical Imaging with Clinic

2 Akkuratova street, St. Petersburg, 197341



A. Yu. Efimtsev
Almazov National Medical Research Center
Russian Federation

Alexander Yu. Efimtsev – Dr. of Sci. (Med.), Professor at the Department of Radiology and Medical Imaging with Clinic

2 Akkuratova street, St. Petersburg, 197341



G. E. Trufanov
Almazov National Medical Research Center
Russian Federation

Alexander Yu. EfimtsevDr. of Sci. (Med.), Professor at the Department of Radiology and Medical Imaging with Clinic

2 Akkuratova street, St. Petersburg, 197341



N. E. Ivanova
Almazov National Medical Research Center
Russian Federation

Natalya E. IvanovaDr. of Sci. (Med.), Full Professor, Distinguished Doctor of the Russian Federation, Corresponding Member of the Russian Academy of Medical and Technical Sciences, Academician of the Academy of Medical and Technical Sciences, Full Member of the Petrovskaya Academy of Sciences and Arts, Member of the Board of the Association of Neurosurgeons of Russia, Member of the Board of the Babchin Association of Neurosurgeons, Member of the Geographical Society of Russia, Doctor of Functional and Ultrasound Diagnostics, Head at the Scientific Department of Russian Neurosurgical Institute, Head at the Scientific Department, Polenov Neurosurgery Institute – the branch of Almazov National Medical Research Centre; Professor at the Department of Neurology and Psychiatry, Institute of Medical Education, Almazov National Medical Research Center 

2 Akkuratova street, St. Petersburg, 197341



D. D. Dorokhova
Almazov National Medical Research Center
Russian Federation

Daria D. DorokhovaResident Physician at the Department of Radiology and Medical Imaging with Clinic

2 Akkuratova street, St. Petersburg, 197341



A. G. Levchuk
Almazov National Medical Research Center
Russian Federation

Anatoly G. LevchukEngineer at the Magnetic Resonance Imaging Department

2 Akkuratova street, St. Petersburg, 197341



References

1. Paul S., Nahar A., Bhagawati M., Kunwar A. A Review on Recent Advances of Cerebral Palsy. Oxidative Medicine and Cellular Longevity. 2022. Doi: 10.1155/2022/2622310.

2. Shavyrin I. A., Keshishyan R. A., Filizhenko T. V. et al. Results of orthopedic-surgical correction of neurogenic deformities of the limbs and spine in children with cerebral palsy. Russian Bulletin of Perinatology and Pediatrics. 2025;70(3):49–53. (In Russ.). Doi: g/10.21508/1027-4065-2025-70-3-49-53.

3. Федеральная служба государственной статистики rosstat.gov.ru 2023. URL: https://rosstat.gov.ru/ (дата обращения: 12.10.2025).

4. Larina N. V., Pavlenko V. B., Korsunskaya L. L. et al. Opportunities for the rehabilitation of children with cerebral palsy using robotic devices and biofeedback. Bulletin of Siberian Medicine. 2020;19(3):156–156. (In Russ.). https://doi.org/10.20538/1682-0363-2020-3-156-165.

5. Loffi R. G., Souto D. O., Cruz T. K. F., Lima A. F. B. D., Rocha F. R. M. C., Barreto S. R., Santana P. A. N., Nascimento A. A. A. C., Haase V. G. Narrative Review of the Theoretical–Methodological Foundations of the TREINI Program. Children. 2024;(11):1181. Doi: 10.3390/children11101181.

6. Bar-Haim S., Harries N., Belokopytov M., Frank A., Copeliovitch L., Kaplanski J., Lahat E. Comparison of efficacy of Adeli suit and neurodevelopmental treatments in children with cerebral palsy. Dev. Med. Child Neurol. 2006;(48):325–330. Doi: 10.1017/S0012162206000727.

7. Awad L. N., Kudzia P., Revi D. A., Ellis T. D., Walsh C. J. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation. IEEE Open J Eng Med Biol. 2020;(1):108–115. Doi: 10.1109/ojemb.2020.2984429. EPMID: 33748765; PMCID: PMC7971412.

8. Litus A. Yu. The Best Domestic Rehabilitation Technical Means. Training Suit “REFORMA-TEKT”. Accessible Environment. 2021;(1):122–125. (In Russ.).

9. Paul S., Nahar A., Bhagawati M., Kunwar A. J. A Review on Recent Advances of Cerebral Palsy. Oxid Med Cell Longev. 2022;(2022):2622310. Doi: 10.1155/2022/2622310. PMID: 35941906; PMCID: PMC9356840.

10. Weinberger R., Warken B., König H., Vill K., Gerstl L., Borggraefe I., Heinen F., von Kries R., Schroeder A. S. Three by three weeks of robot-enhanced repetitive gait therapy within a global rehabilitation plan improves gross motor development in children with cerebral palsy – a retrospective cohort study. Eur J Paediatr Neurol. 2019;23(4):581–588. Doi: 10.1016/j.ejpn.2019.05.003. PMID: 31155454.

11. Feitosa J. A., Fernandes C.A., Casseb R.F., Castellano G. Effects of virtual reality-based motor rehabilitation: a systematic review of fMRI studies. J Neural Eng. 2022;19(1). Doi: 10.1088/1741-2552/ac456e. PMID: 34933281.

12. Vallinoja J., Nurmi T., Jaatela J., Wens V., Bourguignon M., Mäenpää H., Piitulainen H. Functional connectivity of sensorimotor network is enhanced in spastic diplegic cerebral palsy: A multimodal study using f MRI and MEG. Clin Neurophysiol. 2024;(157):4– 14. Doi: 10.1016/j.clinph. 2023.10.014. PMID: 38006621.

13. Wang S., Zhang L., Yang Z., Liu S., Wang X., Li Y., Xu Y., Zhao W. The unique characteristics of extraversion: A systematic review and coordinate-based meta-analysis of resting state functional magnetic resonance imaging studies. Brain Res Bull. 2025;(229):111454. Doi: 10.1016/j.brainresbull.2025.111454. PMID: 40609701.

14. Lee S. W., Bulea T. C., Kline J. E., Damiano D. L. Dynamic Task-Related Changes in Electroencephalography Brain Connectivity During a Button-Press Task in Children with and Without Bilateral Cerebral Palsy. Brain Connect. 2025;15(4):162–174. Doi: 10.1089/brain.2024.0096. PMID: 40366203; PMCID: PMC12223383.

15. Boerwinkle V. L., Sussman B. L., de Lima Xavier L., Wyckoff S. N., Reuther W., Kruer M. C., Arhin M., Fine J. M. Motor network dynamic resting state fMRI connectivity of neurotypical children in regions affected by cerebral palsy. Front Hum Neurosci. 2024;(18):1339324. Doi: 10.3389/fnhum.2024.1339324. PMID: 38835646; PMCID: PMC11148452.

16. Ashtiyani M., Moradi Birgani P., Soleimani M., Jameie S. B., Shahrokhi A., Mirbagheri M. M., Deevband M. R. Corpus Callosum Functional Activities in Children with Cerebral Palsy. J Biomed Phys Eng. 2024;14(1):21–30. Doi: 10.31661/jbpe.v0i0.2106-1354. PMID: 38357606; PMCID: PMC10862116.

17. Chegina D.S. et al. Functional changes in neural networks of the brain in patients with spastic diplegia after translingual neurostimulation. Diagnostic Radiology and Radiotherapy. 2021;12(3):26–34. Doi: 10.22328/20795343-2021-12-3-26-34.

18. Vallinoja J. et al. Functional connectivity of sensorimotor network is enhanced in spastic diplegic cerebral palsy: a multimodal study using fMRI and MEG. Clincal Neurophysiology. 2024;(157):4–14. Doi: 10.1016/j.clinph.2023.10.014.

19. Huang X. et al. Brain functional connectivity and activity during motor control in children with cerebral palsy: a pilot cross-sectional fNIRS study. Translational Pediatrics. 2025;14(5):812–823. Doi: 10.21037/tp-2025-11.

20. Khan O. A. et al. Assessment of cortical activity, functional connectivity, and neuroplasticity in cerebral palsy using functional near-infrared spectroscopy: a scoping review. Developmental Medicine & Child Neurology. 2025;67(7):875–891. Doi: 10.1111/dmcn.16238.

21. Qi W., Zhang Y., Su Y., Hui Z., Li S., Wang H., Zhang J., Shi K., Wang M., Zhou L., Zhu D. Exploring cortical excitability in children with cerebral palsy through lower limb robot training based on MI-BCI. Sci Rep. 2025;15(1):12285. Doi: 10.1038/s41598-025-96946-z. PMID: 40210930; PMCID: PMC11986060.

22. Antoine Légaré et al. Structural and genetic determinants of zebrafish functional brain networks. Sci. Adv. 2025. Doi: 10.1126/sciadv.adv7576.

23. Filho C. A. S. Reorganization of Resting-State EEG Functional Connectivity Patterns in Children with Cerebral Palsy Following a Motor Imagery Virtual-Reality Intervention. Applied Sciences. MDPI AG. 2021. Doi: 10.3390/APP11052372.

24. Xue Z., Zhang W., Zhou N., Ma P., Yuan K., Zheng P., Li J., Chang J. Effects of virtual reality motor games on motor skills in children with cerebral palsy: a systematic review and meta-analysis. Front Psychol. 2025;(15):1483370. Doi: 10.3389/fpsyg.2024.1483370. PMID: 39881687; PMCID: PMC11776641.

25. Damiano D. L., Pekar J. J., Mori S., Faria A. V., Ye X., Stashinko E., Stanley C. J., Alter K. E., Hoon A. H., Chin E. M. Functional and Structural Brain Connectivity in Children with Bilateral Cerebral Palsy Compared to Age-Related Controls and in Response to Intensive Rapid-Reciprocal Leg Training. Front Rehabil Sci. 2022;(3):811509. Doi: 10.3389/fresc.2022.811509. PMID: 36189020; PMCID: PMC9397804.


Review

For citations:


Tlizamova F.A., Efimtsev A.Yu., Trufanov G.E., Ivanova N.E., Dorokhova D.D., Levchuk A.G. Analysis of the effectiveness of a rehabilitation suit in children with cerebral palsy based on comparative changes in resting-state functional brain networks. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2025;17(3):111-122. (In Russ.) https://doi.org/10.56618/2071-2693_2025_17_3_111. EDN: WJGIOW

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-2693 (Print)