Comparative evaluation of clinical-radiological outcomes of Russian osteoplastic material BioOst in minimally invasive transforaminal interbody fusion
https://doi.org/10.56618/2071-2693_2025_17_3_123
EDN: YETQMR
Abstract
INTRODUCTION. Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is the standard treatment for degenerative spinal stenosis. When autologous bone graft is not feasible, the domestic xenogeneic material BioOst may serve as a potential alternative.
AIM. To compare clinical and radiological outcomes of BioOst, autograft, and the foreign analog Orthoss in MIS-TLIF.
MATERIALS AND METHODS. A prospective study enrolled 159 patients divided into three groups: BioOst (n=56), autograft (n=52), and Orthoss (n=51). Clinical outcomes were assessed using NRS-11, ODI, and Macnab criteria. Radiological evaluation (CT-based) included: pseudoarthrosis, fibrous block, bone fusion, and interbody space height.
RESULTS. No statistically significant differences were observed in clinical outcomes or complications (p>0.05). Bone Fusion rates: BioOst – 87.5 %, autograft – 90.4 %, Orthoss – 80.4 % (p>0.05). Interbody height assessment revealed: BioOst and autograft demonstrated statistically equivalent results. A trend toward difference between BioOst and Orthoss (p=0.09), though not statistically significant, with BioOst showing superior performance (<50 % regeneration: 42.9 vs 56.9 % for Orthoss).
CONCLUSION. BioOst exhibits efficacy comparable to autograft. While statistical analysis showed no significant intergroup differences (p>0.05), the observed trend favoring BioOst over the foreign analog supports its recommendation as an alternative osteoplastic material for MIS-TLIF.
About the Authors
V. V. KhlebovRussian Federation
Valentin V. Khlebov – Neurosurgeon at the Neurosurgery Department
4/2 Akademika Lebedeva street, St. Petersburg, 194044
I. V. Volkov
Russian Federation
Ivan V. Volkov – Dr. of Sci. (Med.), Neurosurgeon, Head at the Department of Neurosurgery
27 Mechnikova Avenue, St. Petersburg, 195271
References
1. Konovalov N. A., Ivanov S. V., Brinyuk E. S., Zakirov B. A. Minimally invasive surgery with lumbosacral spine spondylolisthesis: systematic review. Bulletin of Neurology, Psychiatry and Neurosurgery. 2024;17(7(174)): 854–860. (In Russ.]). Doi: 10.33920/med-01-2407-06. EDN; RQBFQX.
2. Mobbs R. J., Phan K., Malham G., Seex K., Rao P. J. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 2015;1(1):2–18. Doi: 10.3978/j.issn.2414-469X.2015.10.05.
3. Haws B. E., Khechen B., Patel D. V. et al. Impact of iliac crest bone grafting on postoperative outcomes and complication rates following minimally invasive transforaminal lumbar interbody fusion. Neurospine. 2019;16(4):772– 779. Doi: 10.14245/ns.1938006.003.
4. Mu X., Yu C., Wang C. et al. Comparison of extreme lateral approach with posterior approach in the treatment of lumbar degenerative diseases: A meta-analysis of clinical and imaging findings. Surgeon. 2021;19(5):268–278. Doi: 10.1186/s13018-023-03652-5.
5. Tung K. K., Tseng W. C., Wu Y. C. et al. Comparison of radiographic and clinical outcomes between ALIF, OLIF, and TLIF over 2-year follow-up: A comparative study. J. Orthop. Surg. Res. 2023;18(1):158. Doi: 10.1186/s13018023-03652-5.
6. Antipov A. P., Gordina E. M., Markov M. A., Bozhkova S. A. Influence of different methods of bone processing on bone mechanical тproperties. Genij Ortopedii. 2022;28(6):783–787. Doi: 10.18019/1028-4427-2022-28-6-783-787.
7. Refitskaya D. Yu., Belen’kiy I. G., Malanin D. A., Mayorov B. A., Demeshchenko M. V. Bone regeneration and principles of bone defects substitution. literature review. The Journal of Emergency Surgery named after I.I. Dzhanelidze. 2024;(3):147–158. (In Russ.). Doi: 10.54866/27129632_2024_3_147. EDN: KSVWDI.
8. Tavares W. M., de França S. A., Paiva W. S., Teixeira M. J. A systematic review and meta-analysis of fusion rate enhancements and bone graft options for spine surgery. Sci. Rep. 2022;12(1):7546. Doi: 10.1038/s41598-022-11551-8.
9. Li J., Zhao Y., Chen S. et al. Research hotspots and trends of bone xenograft in clinical procedures: A bibliometric and visual analysis of the past decade. Bioengineering (Basel). 2023;10(8):929. Doi: 10.3390/bioengineering10080929.
10. Kostiv R. E., Kalinichenko S. G., Matveeva N. Yu. Trophic factors of bone growth, their morphogenetic characterization and clinical significance. Pacific Medical Journal. 2017;(1):10–16. (In Russ.). Available from: https://cyberleninka.ru/article/n/troficheskie-faktory-rosta-kostnoy-tkani-ih-morfogeneticheskaya-harakteristika-i-klinicheskoe-znachenie [Accessed 19 June 2025].
11. Smolentsev D. V., Gurin M. V., Venediktov A. A. et al. Production of xenogeneic bone chips for implantation using supercritical fluid extraction. Medical Engineering. 2019;(4):8–10. (In Russ.). Available from: http://www.mtjournal.ru/archive/2019/meditsinskaya-tekhnika-4/poluchenie-ksenogennoy-kostnoy-kroshki-dlya-implantatsiy-s-pomoshchyu-sverkhkriticheskoy-flyuidnoy-e [Accessed 19 June 2025].
12. Efimov Yu. V. et al. Reconstruction of postoperative defects of the jawwith osteoplastic material Bioost. Journal of Volgograd State Medical University. 2022;19(1):68–72. (In Russ.). Available from: https://cyberleninka.ru/article/n/zameschenie-posleoperatsionnyh-defektov-chelyustey-s-pomoschyu-otechestvennogo-osteoplasticheskogo-materiala-bio-ost [Accessed 17 June 2025].
13. Kireev P. V. et al. Morphological aspects of reparative osteogenesis of postoperative jaw defects using osteoplastic material BIO OST. Volgograd scientific and medical journal. 2023;20(1):5–8. (In Russ.). Available from: https://journal.gbuvmnc.ru/files/uploads/journal/article_2023_1_Lde07gCw.pdf [Accessed 17 June 2025].
Review
For citations:
Khlebov V.V., Volkov I.V. Comparative evaluation of clinical-radiological outcomes of Russian osteoplastic material BioOst in minimally invasive transforaminal interbody fusion. Russian Neurosurgical Journal named after Professor A. L. Polenov. 2025;17(3):123-129. (In Russ.) https://doi.org/10.56618/2071-2693_2025_17_3_123. EDN: YETQMR











